Skip to main content
  • 4706 Accesses

Abstract

The crystal field interaction is an essential ingredient in a discussion of the magnetic properties of materials. It is therefore important to be able to describe and characterize the bonding between the central magnetic ion and its (nonmagnetic) ligand ions in terms of some electronic theory. For such a procedure it is obvious to classify the central magnetic ions according to the character of the partly filled electronic shells giving rise to a permanent magnetic dipole moment due to the orbital motion of the electrons, or to their intrinsic spin, or to both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. & Bleaney, B. (1970) Electron Paramagnetic Resonance (Oxford: Clarendon).

    Google Scholar 

  2. Purwins, H.G. & Leson A. (1990) Adv. Phys. 39, 309–405.

    Article  ADS  Google Scholar 

  3. Bethe, H.A. (1929) Ann. Phys. 3, 133–208.

    Article  Google Scholar 

  4. Stevens, K.W.H. (1952) Proc. Phys. Soc. A, 65, 209–15.

    Article  MATH  ADS  Google Scholar 

  5. Stevens, K.W.H. (1967) Rep. Progr. Phys. 30, 189–226.

    Article  ADS  Google Scholar 

  6. Elliott, RJ. & Stevens, K.W.H. (1953) Proc. R. Soc. A, 219, 387–404.

    Article  ADS  Google Scholar 

  7. Judd, B.R. (1963) Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill).

    Google Scholar 

  8. Hutchings M.T. (1964) Solid State Physics 16, 227–73.

    Article  Google Scholar 

  9. Newman, D.J. (1971) Adv. Phys. 20, 197–255.

    Article  ADS  Google Scholar 

  10. Fulde, P. (1978) Handbook on the Physics and Chemistry of Rare Earths, Chapter 17 (Amsterdam: North-Holland).

    Google Scholar 

  11. Freeman, A.J. & Desclaux, J.P. (1979) J. Magn. Magn. Mater. 12, 11–21.

    Article  ADS  Google Scholar 

  12. Lea, K.R., Leask, M.J.M. & Wolf, W.P. (1962) J. Phys. Chem. Solids 23, 1381–405.

    Article  ADS  Google Scholar 

  13. Wybourne, E.G. (1965) Spectroscopic Properties of Rare Earths (New York: John Wiley).

    Google Scholar 

  14. Nielson C.W. & Koster, G.F. (1964) Spectroscopic Coefficients for the pn, dn, and fn configurations (Cambridge: M.I.T. Press).

    Google Scholar 

  15. Sternheimer, R.M. (1966) Phys. Rev. 146, 140–60.

    Article  ADS  Google Scholar 

  16. Morrison, C.A. (1988) Angular Momentum Theory Applied to Interactions in Solids (Berlin: Springer).

    Google Scholar 

  17. Tellenbach, U. (1974) Report AF-SSP-75 (ETH Zurich, unpublished).

    Google Scholar 

  18. Urland, W. (1976) Chem. Phys. 14, 393–401.

    Article  ADS  Google Scholar 

  19. Jorgensen C.K., Pappalardo, R. & Schmidtke, H.H. (1963) Chem. Phys. 39, 1422–30.

    Article  ADS  Google Scholar 

  20. Blaha, P., Schwarz, K. & Luitz (1997) WIEN91 (Vienna Technical University, unpublished).

    Google Scholar 

  21. Divis, M., Rusz, J., Hilscher, G., Michor, H., Blaha, P. & Schwarz, K. (2002) Czech. J. Phys. 52, 283–6.

    Article  Google Scholar 

  22. Novak, P. (1996) Phys. Stat. Sol. B, 198, 729–40.

    Article  ADS  Google Scholar 

  23. Gasser, U., Allenspach, P., Fauth, F., Henggeler, W., Mesot, J., Furrer, A., Rosenkranz, S., Vorderwisch, P. & Buchgeister, M. (1996) Z. Phys. B, 101, 345–52.

    Article  ADS  Google Scholar 

  24. Strässle, Th., Divis, M., Rusz, J., Janssen, S., Juarnyi, F., Sadikov, R. & Furrer, A. (2003) J. Phys. Condens. Matter 15, 3257–66.

    Article  ADS  Google Scholar 

  25. Furrer, A. & Güdel, H.U. (1997) Phys. Rev. B, 56, 15062–72.

    Article  ADS  Google Scholar 

  26. Elsenhans, O., Furrer, A., Purwins, H.G. & Hulliger, F. (1990) Z. Phys. B, 80, 281–6.

    Article  ADS  Google Scholar 

  27. Hodges, J.A., Bonville, P., Imbert, P., Jéhanno, G. & Debray, P. (1991) Physica C, 184, 270–82.

    Article  ADS  Google Scholar 

  28. Jandl, S., Dufour, P., Strach, T., Ruf, T., Cardona, M., Nekvasil, V., Chen, C., Wanklyn, B.M. & Pinol, S. (1996) Phys. Rev B, 53, 8632–7.

    Article  ADS  Google Scholar 

  29. Strach, T., Ruf T., Cardona, M., Lin, C.T., Jandl. S., Nekvasil, V., Zhigunov, D.I., Barilo, S.N. & Shiryaev, S.V. (1996) Phys. Rev. B, 54, 4276–82.

    Article  ADS  Google Scholar 

  30. Henggeler W., Chattopadhyay, T., Roessli, B., Vorderwisch, P., Thalmeier, P., Zhigunov, D.I., Barilo, S.N. & Furrer, A. (1997) Phys. Rev. B, 55, 1269–79.

    Article  ADS  Google Scholar 

  31. Brockhouse, B.N. (1955) Can. J. Phys. 33, 889–91.

    Google Scholar 

  32. Halpern, O. & Johnson, M.H. (1939) Phys. Rev, 55, 898–923.

    Article  MATH  ADS  Google Scholar 

  33. Squires, G.L. (1996) Thermal Neutron Scattering (New York: Dover Publications).

    Google Scholar 

  34. Lovesey, S.W. (1987) Theory of Neutron Scattering from Condensed Matter (Oxford: Oxford Science Publishers).

    Google Scholar 

  35. Johnston, D.F. (1966) Proc. Phys. Soc, 88, 37–52.

    Article  ADS  Google Scholar 

  36. Van Hove, L. (1954) Phys. Rev. 93, 268–9.

    Article  ADS  Google Scholar 

  37. Schmid, B., Hälg, B., Furrer, A., Urland, W. & Kremer, R. (1987) J. Appl. Phys. 61, 3426–8.

    Article  ADS  Google Scholar 

  38. Birgeneau, R.J. (1972) J. Phys. Chem. Solids. 33, 59–68.

    Article  ADS  Google Scholar 

  39. Lewis Ian, R. & Edwards Howell, G.M. (2001) Handbook of Raman Spectroscopy (New York: Marcel Dekker).

    Google Scholar 

  40. Sanjurjo, J.A., Martins, G.B., Pagliuso, P.G., Granado, E., Torriani, I., Rettori, C., Oseroff, S. & Fisk, Z. (1995) Phys. Rev. B, 51, 1185–9.

    Article  ADS  Google Scholar 

  41. Berry, A.J., McCaw, C.S., Morrison, I.D. & Denning, R.G. (1996) J. Lumin. 66, & 67, 272–7.

    Article  Google Scholar 

  42. Cardona, M. (1982) Light Scattering in Solids II (Berlin: Springer).

    Google Scholar 

  43. Yanson, I.K. (1974) Sov. Phys. JETP 39, 506–13.

    ADS  Google Scholar 

  44. Jansen, A.G.M., van Gelder, A.P. & Wyder, P. (1980) J. Phys. C, 13, 6073–118.

    Article  ADS  Google Scholar 

  45. Akimenko, A.I., Ponomarenko, N.M., Yanson, I.K., Janos, S. & Reiffers, M. (1984) Sov. Phys. Solid State 26, 1374–9.

    Google Scholar 

  46. Amato, A., Bührer, W., Grayevski, A., Gygax, F.N., Furrer, A., Kaplan, N. & Schenck, A. (1992) Solid State Comm. 82, 767–71.

    Article  ADS  Google Scholar 

  47. Reiffers, M., Naidyuk, Yu.G., Janseen, A.G.M., Wyder, P., Yanson, I.K., Gignoux, D. & Schmitt, D.P. (1989) Phys. Rev. Lett. 62, 1560–3.

    Article  ADS  Google Scholar 

  48. Naidyuk, Yu.G. & Yanson, I.K. (2004) Point-Contact Spectroscopy (Berlin: Springer).

    Google Scholar 

  49. Richardson, F.S., Reid, M.F., Dallara, J.J. & Smith, R.D. (1985) J. Chem. Phys. 83, 3813–30.

    Article  ADS  Google Scholar 

  50. Mesot, J., Rubio, Temprano, D. & Furrer, A. (2002) Trends in Applied Spectroscopy, Vol. 4 (Trivandrum: Research Trends) p 75.

    Google Scholar 

  51. Mesot, J., Allenspach, P., Staub, U., Furrer, A., Mutka, H., Osborn, R. & Taylor, A. (1993) Phys. Rev. B, 47, 6027–36.

    Article  ADS  Google Scholar 

  52. Mesot, J. & Furrer, A. (1998) Neutron Scattering in Layered Copper-Oxide Superconductors p 335 (Dordrecht: Kluwer).

    Google Scholar 

  53. Roeland, L.W., de Boer, F.R., Huang, Y.K., Menovsky, A.A. & Kadowaki, K. (1988) Physica C, 152, 72–6.

    Article  ADS  Google Scholar 

  54. Dunlap, B.D., Slaski, M., Hinks, D.G., Soderholm, L., Beno, M., Zhang, K., Segre, C., Crabtree, G.W., Kwok, W.K., Malik, S.K., Schuller, I.K., Jorgensen, J.D. & Sungaila, Z. (1987) J. Magn. Magn. Mater. 68, L139–44.

    Article  ADS  Google Scholar 

  55. Van der Meulen, H.P., Franse, J.J.M., Tarnawski, Z., Kadowaki, K., Klasse, J.C.P. & Menovsky, A.A. (1988) Physica C, 152, 65–71.

    Article  ADS  Google Scholar 

  56. Hodges, J.A., Imbert, P., Marimon de Cunha, J.B. & Sanchez, J.P. (1989) Physica C, 160, 49–54.

    Article  ADS  Google Scholar 

  57. Heitler, W. & Teller, E. (1936) Proc. Roy. Soc. A, 155, 629–39.

    Article  MATH  ADS  Google Scholar 

  58. Kronig, R. de L. (1939) Physica 6, 33–43.

    Article  MATH  ADS  Google Scholar 

  59. van Vleck, J.H. (1939) J. Chem. Phys. 7, 72–84; 1940 Phys. Rev. 57, 426–47.

    Article  ADS  Google Scholar 

  60. Orbach, R. (1961) Proc. Roy. Soc. A, 264, 458–84.

    Article  ADS  Google Scholar 

  61. Korringa, J. (1950) Physica (Utrecht) 16, 601–10.

    Article  MATH  ADS  Google Scholar 

  62. Becker, K.W., Fulde, P. & Keller, J. (1977) Z. Phys. B, 28, 9–18.

    Article  ADS  Google Scholar 

  63. Feile R., Loewenhaupt M., Kjems J.K. & Hoenig H.E. (1987) Phys. Rev. Lett. 47, 610–3.

    Article  ADS  Google Scholar 

  64. Buyers, W.J.L., Holden, T.M., Svenson, B.C., Cowley, R.A. & Hutchings, M.T. (1971) J.Phys. C, 4, 2139–59.

    Article  ADS  Google Scholar 

  65. Bednorz, J.G. & Mtiller, K.A. (1986) Z. Phys. B, 64, 189–93.

    Article  ADS  Google Scholar 

  66. Cava, R.J., Hewat, A.W., Hewat, E.A., Batlogg, B., Marezio, M., Rabe, K.M., Krajevski, J.J., Peck, W.F.Jr. & Rupp, L. W. (1990) Physica C, 165, 419–33.

    Article  ADS  Google Scholar 

  67. Staub, U., Mesot, J., Guillaume, M., Allenspach, P., Furrer, A., Mutka, H., Bowden, Z. & Taylor, A. (1994) Phys. Rev. B, 50, 4068–74.

    Article  ADS  Google Scholar 

  68. Radaelli, P.O., Segre, C.U., Hinks, D.G. & Joergensen, J.D. (1992) Phys. Rev. B, 45, 4923–9.

    Article  ADS  Google Scholar 

  69. Mesot, J., Allenspach, P., Staub, U., Furrer, A. & Mutka, H. (1993) Phys. Rev. Lett. 70, 865–8.

    Article  ADS  Google Scholar 

  70. Niedermayer, C., Bernhard, C., Blasius, T., Golnik, A., Moodenbaugh, A. & Budnick, J.I. (1998) Phys. Rev. Lett. 80, 3843–6.

    Article  ADS  Google Scholar 

  71. Hizhnyakov, V. & Sigmund, E. (1988) Physica C, 156, 655–66.

    Article  ADS  Google Scholar 

  72. Kremer, R., Sigmund, E., Hizhnyakov, V., Hentsch, F., Simon, A., Mtiller, K.A. & Mehring, M. (1992) Z Phys. B, 86, 319–24.

    Article  ADS  Google Scholar 

  73. Kirkpatrick, S. (1973) Rev. Mod Phys. 45, 574–88.

    Article  ADS  Google Scholar 

  74. Allenspach, P., Furrer, A. & Rupp, B. (1990) Progress in High-Temperature Superconductivity (Singapore: World Scientific) p 318.

    Google Scholar 

  75. Furrer, A., Allenspach, P., Fauth, F., Guillaume, M., Henggeler, W., Mesot, J. & Rosenkranz, S. (1994) Physica C, 235–240 261–4.

    Article  Google Scholar 

  76. Hammel, P.C., Reyes, A.P., Fisk, Z., Takigawa, M., Thompson, J.D., Heffher, K.H. & Cheong, S.W. (1990) Phys. Rev. B, 42, 6781–3.

    Article  ADS  Google Scholar 

  77. Wtibbeler, G. & Schirmer, O. F. (1990) Phys. Stat. Sol. (b) 174 K21–5.

    Article  ADS  Google Scholar 

  78. Poulakis, N., Palles, D., Liarokapis, E., Conder, K. & Kaldis, E. (1996) Phys. Rev. B, 53, R534–7.

    Article  ADS  Google Scholar 

  79. Emery, V.J., Kivelson, S.A. & Lin, H.Q. (1990) Phys. Rev. Lett. 64, 475–8.

    Article  ADS  Google Scholar 

  80. Grilli, M., Raimondi, R., Castellani, C., di Castro, C. & Kotliar, G. (1991) Phys. Rev. Lett. 67, 259–62.

    Article  ADS  Google Scholar 

  81. Batlogg, B. & Varma, C. (2000) Physics World 13 (No 2) 33–7.

    Google Scholar 

  82. Furrer, A. (2005) Structure and Bonding 114, 171–204.

    Google Scholar 

  83. Raffa, F., Ohno, T., Mali, M., Roos, J., Brinkmann, D., Conder, K. & Eremin, M. (1998) Phys. Rev. Lett. 81, 5912–5.

    Article  ADS  Google Scholar 

  84. Rubio Temprano, D., Mesot, J., Janssen, S., Conder, K., Furrer, A., Mutka, H. & Mtiller, K.A. (2000) Phys. Rev. Lett. 84, 1990–3.

    Article  ADS  Google Scholar 

  85. Rubio Temprano, D., Mesot, J., Janssen, S., Conder, K., Furrer, A., Sokolov, A., Trounov, V., Kazakov, S.M., Karpinski, J. & Mtiller, K.A. (2001) Eur. Phys. J. B, 19, 5–8.

    Article  ADS  Google Scholar 

  86. Rubio Temprano, D., Conder, K., Furrer, A., Mutka, H., Trounov, V. & Mtiller, K.A. (2002) Phys. Rev. B, 66, 184506.

    Article  ADS  Google Scholar 

  87. Furrer, A., Conder, K., Hafliger, P.S. & Podlesnyak, A. (2004) Physica C, 408–410 773–4.

    Article  Google Scholar 

  88. Hafliger, P.S., Podlesnyak, A., Conder, K., Pomjakushina, E. & Furrer, A. (2004) Europhys. Lett. 67, 1018–23.

    Article  ADS  Google Scholar 

  89. Podlesnyak, A., Häfliger, P.S., Conder, K. & Furrer, A. (2005) J. Phys.: Condens. Matter 11, S801–6.

    Article  Google Scholar 

  90. Andergassen, S., Caprara, S., di Castro, C. & Grilli, M. (2001) Phys. Rev. Lett. 87, 056401.

    Article  ADS  Google Scholar 

  91. Bussmann-Holder, A. (2000) J. Supercond. 13, 773–6.

    Google Scholar 

  92. Gor'kov, L.P. (2000) J. Supercond. 13, 765–9.

    Google Scholar 

  93. Moze, O. (1998) Handbook of Magnetic Materials, Vol. 11 (Amsterdam: Elsevier) p 493.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Furrer, A., Podlesnyak, A. (2006). CRYSTAL FIELD SPECTROSCOPY. In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_6

Download citation

Publish with us

Policies and ethics