Skip to main content

Abstract

After the development during the last 30 years of methods such as magicangle spinning, multiple-resonance experiments (cross-polarization, high power decoupling, etc.), multiple pulses techniques, and multidimensional spectroscopy, pulsed solid state nuclear magnetic resonance (NMR) is among the most important experimental tools for studying physical and chemical properties of new materials in the solid-state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haeberlen, U. (1976)High Resolution NMR in Solids (Academic Press) p 190.

    Google Scholar 

  2. Mehring, M. (1983)High Resolution NMR in Solids (Springer-Verlag) p 342.

    Google Scholar 

  3. Ernst, R.R., Bodenhausen, G. & Kokaun, A. (1987)Principles of Nuclear Magnetic Resonance in one and Two Dimensions (Clarendon Press) p 610.

    Google Scholar 

  4. Goldman, M. (1988)Quantum Description of High-Resolution NMR in Liquids (Oxford University Press) p 268.

    Google Scholar 

  5. Tonelli, A.E.(1989)NMR Spectroscopy and Polymer Microstructure—The Conformational Connection (VCH Publishers, Inc.) p 252.

    Google Scholar 

  6. Slichter, C.P. (1990)Principles of Magnetic Resonance (Springer-Verlag) p 655.

    Google Scholar 

  7. Schmidt-Rohr, K. & Spiess, H.W. (1994)Multidimensional Solid-State NMR and Polymers (Academic Press) p 478.

    Google Scholar 

  8. Stejskal, E.O. & Memory, J.D. (1994)High Resolution NMR in the Solid State: Fundamentals of CP/MAS (Oxford University Press) p 189.

    Google Scholar 

  9. Mackenzie, K.J.D. & Smith, M.E.(2002)Multinuclear Solid-State NMR of Inorganic Materials (Pergamon) 6 p 726.

    Google Scholar 

  10. Cohen-Tannoudji, C., Diu, B. & Laloe, F. (1977)Quantum Mechanics (Hermann and John Wiley & Sons) I p 898.

    Google Scholar 

  11. Heatley, F.(1993) InNMR Spectroscopy of Polymers, 1st ed.; Ibbett, R.N. Ed.; Blackie Academic & Professional: London, pp 1–49.

    Google Scholar 

  12. Maricq, M.M. & Waugh, J.S. (1979)J. Chem. Phys. 70, 3300–3316.

    ADS  Google Scholar 

  13. Sarles, L.R. & Cotts, R.M. (1958)Phys. Rev. 111, 853–859.

    ADS  Google Scholar 

  14. Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V. & Griffin, R.G. (1995) J. Chem. Phys. 103, 6951–6958.

    ADS  Google Scholar 

  15. Waugh, J.S., Huber, L.M. & Haeberlen, U. (1968)Phys. Rev. Lett. 20, 180–182.

    ADS  Google Scholar 

  16. Mansfield, P. (1971) Journal of Physics PartC Solid State Phys. 4, 1444–1452.

    ADS  Google Scholar 

  17. Rhim, W.K., Elleman, D.D. & Vaughan, R.W. (1973)J. Chem. Phys. 59, 3740–3749.

    ADS  Google Scholar 

  18. Burum, D.P. & Rhim, W.K. (1979)J. Chem. Phys. 71, 944–956.

    ADS  Google Scholar 

  19. Lee, M. & Goldburg, W.I. (1965)Phys. Rev. 140, 1261–1271.

    ADS  Google Scholar 

  20. Andrew, E.R., Bradbury, A. & Eades, R. G. (1959)Nature 183, 1802–1803.

    ADS  Google Scholar 

  21. Lowe, I.J. (1959)Phys. Rev. Lett. 2, 285–287.

    ADS  Google Scholar 

  22. Andrew, E.R. & Eades, R.G. (1962) Discuss. Faraday Soc. 38–42.

    Google Scholar 

  23. Pines, A., Gibby, M.G. & Waugh, J.S. (1973)J. Chem. Phys. 59, 569–590.

    ADS  Google Scholar 

  24. Schaefer, J. & Stejskal, E.O. (1976) J. Am. Chem. Soc. 98, 1031–1032.

    Google Scholar 

  25. Jenner, J. (1971) InAmpère International Summer School: Basko Polje, Yugoslavia.

    Google Scholar 

  26. Aue, W.P., Bartholdi, E. & Ernst, R.R. (1976)J. Chem. Phys. 64, 2229–2246.

    ADS  Google Scholar 

  27. Güinther, H. (1996) NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (John Wiley & Sons).

    Google Scholar 

  28. Redfield, A.G. & Kunz, S.D. (1975) J. Magn. Reson. 19, 250–254.

    Google Scholar 

  29. States, D.J., Haberkorn, R.A. & Ruben, D.J. (1982) J. Magn. Reson. 48, 286–292.

    Google Scholar 

  30. Chandrakumar, N. & Subramanian, S. (1987)Modern Techniques in High-Resolution FT-NMR (Springer-Verlag) p 388.

    Google Scholar 

  31. Inigo, A.R., Chiu, H-C., Fann, W., Huang, Y-S., Jeng, U-S.T-L.L., Hsu, C-H., Peng, K-Y. & Chen, S-A. (2004)Phys. Rev. B. 69.

    Google Scholar 

  32. Palmer, A.G., Williams, J. & McDermott, A. (1996)J. Phys. Chem. 100, 13293–13310.

    Google Scholar 

  33. Andronis, V. & Zografi, G. (1998)Pharm. Res. 15, 835–842.

    Google Scholar 

  34. Favre, D.E., Schaefer, D.J., Auerbach, S.M. & Chmelka, B.F. (1998)Phys. Rev. Lett. 81, 5852–5855; Wilhelm, M., Firouzi, A., Favre, D.E., Bull, L.M., Schaefer, D.J., Chmelka, B.F. (1995)J. Am. Chem. Soc. 117, 2923–2924.

    ADS  Google Scholar 

  35. Fujara, F., Petry, W., Diehl, R.M., Schnauss, W. & Sillescu, H. (1991)Europhys. Lett. 14, 563–568.

    ADS  Google Scholar 

  36. Sillescu, H. (1999)J. Non-Cryst. Solids 243, 81–108.

    ADS  Google Scholar 

  37. Donoso, J.P., Bonagamba, T.J., Panepucci, H.C., Oliveira, L.N., Gorecki, W., Berthier, C. & Armand, M. (1993) J. Chem. Phys. 98, 10026–10036.

    ADS  Google Scholar 

  38. Dahmouche, K., Atik, M., Mello, N.C., Bonagamba, T.J., Panepucci, H., Aegerter, M.A. & Judeinstein, P. (1997)J. Sol-Gel Sci.Technol. 87, 11–715.

    Google Scholar 

  39. Bohmer, R., Jorg, T., Qi, F. & Titze, A. (2000) Chem. Phys. Lett. 316, 419–424.

    ADS  Google Scholar 

  40. Brow, R.K. (2000)J. Non-Cryst. Solids 263, 1–28.

    ADS  Google Scholar 

  41. Georgiev, D.G., Mitkova, M., Boolchand, P., Brunklaus, G., Eckert, H. & Micoulaut, M. (2001)Phys. Rev. B. 6413.

    Google Scholar 

  42. Schaefer, J., Stejskal, E.O., McKay, R.A. & Dixon, W.T. (1984)J. Magn. Reson. 57, 85–92.

    Google Scholar 

  43. Hong, M., Yao, X.L., Jakes, K. & Huster, D. (2002) J. Phys. Chem. B, 106, 7355–7364.

    Google Scholar 

  44. Hong, M., Gross, J.D. & Griffin, R.G. (1997)J. Phys. Chem. B, 101, 5869–5874.

    Google Scholar 

  45. Madhu, P.K., Goldbourt, A., Frydman, L. & Vega, S. (2000)J. Chem. Phys. 112, 2377–2391.

    ADS  Google Scholar 

  46. Medek, A., Harwood, J.S. & Frydman, L. (1995)J. Am. Chem. Soc. 117, 12779–12787.

    Google Scholar 

  47. Gullion, T. & Schaefer, J. (1989) J. Magn. Reson. 81, 196–200.

    Google Scholar 

  48. Schmidt-Rohr, K., Hu, W. & Zumbulyadis, N. (1998) Science 280, 714–717.

    ADS  Google Scholar 

  49. Abragam, A. (1994)Principles of Nuclear Magnetism (Oxford University Press) p 599.

    Google Scholar 

  50. Void, R.R.(1994) In Nuclear Magnetic Resonance Probes of Molecular Dynamics, Tycko, R., Ed.; Kluwer Academic Publishers: Dordrecht, Vol. 1, pp 27–106.

    Google Scholar 

  51. Spiess, H.W. (1985)Deuteron NMR—A new Tool for Studying Chain Mobility and orientation in Polymers (Springer) 66 p 324.

    Google Scholar 

  52. Frydman, L., Vallabhaneni, S., Lee, Y.K. & Emsley, L. (1994) J. Chem. Phys. 101, 111–117.

    ADS  Google Scholar 

  53. Liu, S.F., Mao, J.D. & Schmidt-Rohr, K. (2002)J. Magn. Reson. 155, 15–28.

    ADS  Google Scholar 

  54. Powles, J.G. & Strange, J.H. (1963)Proc. Phys. Soc., London 82, 6–15.

    ADS  Google Scholar 

  55. Hirschinger, J., Miura, H., Gardner, K.H. & English, A.D. (1990)Macromolecules 23, 2153–2169.

    ADS  Google Scholar 

  56. Lin, W.Y. & Blum, F.D. (1997)Macromolecules 30, 5331–5338.

    ADS  Google Scholar 

  57. Kaji, H., Miura, N. & Schmidt-Rohr, K. (2003)Macromolecules 36, 6100–6113.

    ADS  Google Scholar 

  58. Schmidt, A., Smith, S.O., Raleigh, D.P., Roberts, J.E., Griffin, R.G. & Vega, S. (1986) J. Chem. Phys. 85, 4248–4253.

    ADS  Google Scholar 

  59. Schmidt, A. & Vega, S. (1992) J. Chem. Phys. 96, 2655–2680.

    ADS  Google Scholar 

  60. Reichert, D., Hempel, G., Zimmermann, H., Schneider, H. & Luz, Z. (2000) Solid State Nucl. Magn. Reson. 18, 17–36.

    Google Scholar 

  61. Slichter, W.P. & Mandell, E.R. (1959)J. Appl. Phys. 30, 1473–1478.

    ADS  Google Scholar 

  62. Slichter, W.P. & Mandell, E.R. (1958) J. Appl. Phys. 29, 1438–1441.

    ADS  Google Scholar 

  63. Schmidt-Rohr, K., Clauss, J. & Spiess, H.W. (1992)Macromolecules 25, 3273–3277.

    ADS  Google Scholar 

  64. Clauss, J., Schmidt-Rohr, K. & Spiess, H.W. (1993)Acta Polym. 44, 1–17.

    Google Scholar 

  65. Qiu, X.H. & Mirau, P.A. (2000) J. Magn. Reson. 142, 183–189.

    ADS  Google Scholar 

  66. Vinogradov, E., Madhu, P.K. & Vega, S. (1999)Chem. Phys. Lett. 314, 443–450.

    ADS  Google Scholar 

  67. Bielecki, A., Kolbert, A.C. & Levitt, M.H. (1989)Chem. Phys. Lett. 155, 341–346.

    ADS  Google Scholar 

  68. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. (1979) J. Chem. Phys. 71, 4546–4553.

    ADS  Google Scholar 

  69. Kaufmann, S., Wefing, S., Schaefer, D. & Spiess, H.W. (1990) J. Chem. Phys. 93, 197–214.

    ADS  Google Scholar 

  70. Leisen, J., Schmidt-Rohr, K. & Spiess, H.W. (1993)Physica A, 201, 79–87.

    ADS  Google Scholar 

  71. Wefing, S., Kaufmann, S. & Spiess, H.W. (1988)J. Chem. Phys. 89, 1234–1244.

    ADS  Google Scholar 

  72. Heuer, A., Wilhelm, M., Zimmermann, H. & Spiess, H.W. (1995)Phys. Rev. Lett. 75, 2851–2854.

    ADS  Google Scholar 

  73. Schmidt-Rohr, K. & Spiess, H.W. (1991)Phys. Rev. Lett. 66, 3020–3023.

    ADS  Google Scholar 

  74. Tracht, U., Wilhelm, M., Heuer, A., Feng, H., Schmidt-Rohr, K. & Spiess, H.W.(1998) Phys. Rev. Lett. 81, 2727–2730.

    ADS  Google Scholar 

  75. DeAzevedo, E.R., Hu, W.G., Bonagamba, T.J. & Schmidt-Rohr, K. (1999) J. Am. Chem.Soc. 121, 8411–8412.

    Google Scholar 

  76. Bonagamba, T.J., Becker-Guedes, F., deAzevedo, E.R., Hu, W-H. & Schmidt-Rohr, K. (2000) InAm. Phys. Soc. Meeting: Minneapolis, USA.

    Google Scholar 

  77. Rossler, E.(1986) Chem. Phys. Lett. 128, 330–334.

    ADS  Google Scholar 

  78. Qi, F., Jorg, T. & Bohmer, R. (2002) Solid State Nucl. Magn. Reson. 22, 484–500.

    Google Scholar 

  79. DeAzevedo, E.R., Reichert, D., Vidoto, E.L.G., Dahmouche, K., Judeinstein, P. & Bonagamba, T.J. (2003) Chem. Mat. 15, 2070–2078.

    Google Scholar 

  80. Gerardy-Montouillout, V., Malveau, C., Tekely, P., Olender, Z. & Luz, Z. (1996) J. Magn. Reson., Ser. A, 123, 7–15.

    Google Scholar 

  81. Reichert, D., Zimmermann, H., Tekely, P., Poupko, R. & Luz, Z. (1997) J. Magn. Reson. 125, 245–258.

    ADS  Google Scholar 

  82. Fujara, F., Wefing, S. & Spiess, H.W. (1986) J. Chem. Phys. 84, 4579–4584.

    ADS  Google Scholar 

  83. Reichert, D., Tekely, P. & Luz, Z. (2002) Prog. Nucl. Magn. Reson. Spectrosc. 4, 83–113.

    Google Scholar 

  84. Wefing, S. & Spiess, H.W. (1988) J. Chem. Phys. 89, 1219–1233.

    ADS  Google Scholar 

  85. McCrum, N.G., Read, B.E.P. & Williams, G. (1991) Anelastic and Dielectric Effects in Polymeric Solids (Dover) 1 p 617.

    Google Scholar 

  86. Schmidt-Rohr, K., Kulik, A.S., Beckham, H.W., Ohlemacher, A., Pawelzik, U., Boeffel, C. & Spiess, H.W. (1994) Macromolecules 27, 4733–4745.

    ADS  Google Scholar 

  87. Schmidt-Rohr, K., Wilhelm, M., Johansson, A. & Spiess, H.W. (1993) Magn. Reson. Chem. 31, 352–356.

    Google Scholar 

  88. Bonagamba, T.J., Becker-Guedes, F., DeAzevedo, E.R. & Schmidt-Rohr, K. (2001) J. Polym. Sci, PartB: Polym. Phys. 39, 2444–2453.

    ADS  Google Scholar 

  89. Becker-Guedes, F., deAzevedo, E.R., Bonagamba, T.J. & Schmidt-Rohr, K (2004) Appl. Magn. Reson. 27, 383–400.

    Article  Google Scholar 

  90. Kulik, A.S., Beckham, H.W., Schmidt-Rohr, K., Radloff, D., Pawelzik, U., Boeffel, C. & Spiess, H.W. (1994) Macromolecules 27, 4746–4754.

    ADS  Google Scholar 

  91. Wind, M., Graf, R., Heuer, A. & Spiess, H.W. (2003) Phys. Rev. Lett. 91.

    Google Scholar 

  92. Pascui, O., Beiner, M. & Reichert, D. (2003) Macromolecules 36, 3992–4003.

    ADS  Google Scholar 

  93. Schaefer, D. & Spiess, H.W. (1992) J. Chem. Phys. 97, 7944–7954.

    ADS  Google Scholar 

  94. Schaefer, D., Spiess, H.W., Suter, U.W. & Fleming, W.W. (1990) Macromolecules 23, 3431–3439.

    ADS  Google Scholar 

  95. Schnauss, W., Fujara, F. & Sillescu, H. (1992) J. Chem. Phys. 97, 1378–1389.

    ADS  Google Scholar 

  96. Chang, I. & Sillescu, H. (1997) J. Phys. Chem. B, 101, 8794–8801.

    Google Scholar 

  97. Diezemann, G., Bohmer, R., Hinze, G. & Sillescu, H. (1998) J. Non-Cryst. Solids 235, 121–127.

    ADS  Google Scholar 

  98. Doss, A., Paluch, M., Sillescu, H. & Hinze, G. (2002) J. Chem. Phys. 117, 6582–6589.

    ADS  Google Scholar 

  99. Pschorn, U., Rossler, E., Sillescu, H., Kaufmann, S., Schaefer, D. & Spiess, H.W.(1991) Macromolecules 24, 398–402.

    ADS  Google Scholar 

  100. Williams, M.L., Landel, R.F. & Ferry, J.D. (1955) J. Am. Chem. Soc. 77, 3701.

    Google Scholar 

  101. DeAzevedo, E.R., Tozoni, J.R., Schmidt-Rohr, K. & Bonagamba, T. (2005) J. Chem. y Phys. 122, 154506.

    ADS  Google Scholar 

  102. DeAzevedo, E.R., Bonagamba, T.J. & Schmidt-Rohr, K. (2000) J. Magn. Reson. 142, 86–96.

    ADS  Google Scholar 

  103. Vosegaard, T. & Nielsen, N.C. (2004) Magn. Reson. Chem. 42, 285–290.

    Google Scholar 

  104. Kaji, H. & Horii, F. (2003) Chem. Phys. Lett. 377, 322–328.

    ADS  Google Scholar 

  105. Dejong, A.F., Kentgens, A.P.M. & Veeman, W.S. (1984) Chem. Phys. Lett. 109, 337–342.

    ADS  Google Scholar 

  106. Hagemeyer, A., Schmidt-Rohr, K. & Spiess, H.W. (1989) Adv. Magn. Reson. 13, 85–129.

    Google Scholar 

  107. Schmidt, C., Blumich, B. & Spiess, H.W. (1988) J. Magn. Reson. 79, 269–290.

    Google Scholar 

  108. DeAzevedo, E.R., Franco, R.W.A., Marletta, A., Faria, R.M. & Bonagamba, T.J. (2003) J. Chem. Phys. 119, 2923–2934.

    ADS  Google Scholar 

  109. Collison, C.J., Rothberg, L.J., Treemaneekarn, V. & Li, Y. (2001) Macromolecules 34, 2346–2352.

    ADS  Google Scholar 

  110. Zemke, K., Schmidt-Rohr, K. & Spiess, H.W. (1994) Acta Polym. 45, 148–159.

    Google Scholar 

  111. Luz, Z., Spiess, H.W. & Titman, J.J. (1992) Isr. J. Chem. 32, 145–160.

    Google Scholar 

  112. Olender, Z., Reichert, D., Mueller, A., Zimmermann, H., Poupko, R. & Luz, Z. (1996) J. Magn. Reson., Ser. A, 120, 31–45.

    Google Scholar 

  113. Bennett, A.E., Ok, J.H., Griffin, R.G. & Vega, S. (1992) J. Chem. Phys. 96, 8624–8627.

    ADS  Google Scholar 

  114. Reichert, D., Bonagamba, T.J. & Schmidt-Rohr, K. (2001) J. Magn. Reson. 151, 129–135.

    ADS  Google Scholar 

  115. Robyr, P. & Gan, Z. (1998) J. Magn. Reson. 131, 254–260.

    ADS  Google Scholar 

  116. Robyr, P., Tomaselli, M., Straka, J., Grobpisano, C., Suter, U.W., Meier, B.H. & Ernst, R.R. (1995) Mol. Phys. 84, 995–1020.

    ADS  Google Scholar 

  117. Robyr, P., Meier, B.H. & Ernst, R.R. (1991) Chem. Phys. Lett. 187, 471–478.

    ADS  Google Scholar 

  118. Robyr, P., Gan, Z. & Suter, U.W. (1998) Macromolecules 31.

    Google Scholar 

  119. Jager, C., Hartmann, P., Witter, R. & Braun, M. (2000) J. Non-Cryst. Solids 263, 61–72.

    ADS  Google Scholar 

  120. Reichert, D., Pascui, O., Bonagamba, T.J., deAzevedo, E.R. & Schmidt, A. (2003) Chem. Phys. Lett. 380, 583–588.

    ADS  Google Scholar 

  121. DeAzevedo, E.R., Hu, W.G., Bonagamba, T.J. & Schmidt-Rohr, K. (2000) J. Chem. Phys. 112, 8988–9001.

    ADS  Google Scholar 

  122. Doss, A., Paluch, M., Sillescu, H. & Hinze, G. (2002) Phys. Rev. Lett. 88.

    Google Scholar 

  123. Hinze, G., Diezemann, G. & Sillescu, H. (1998) Europhys. Lett. 44, 565–570.

    ADS  Google Scholar 

  124. Tracht, U., Wilhelm, H., Heuer, A. & Spiess, H.W. (1999) J. Magn. Reson. 140, 460–470.

    ADS  Google Scholar 

  125. Qi, F., Diezemann, G., Bohm, H., Lambert, J. & Bohmer, R. (2004) J. Magn. Reson. 169, 225–239.

    ADS  Google Scholar 

  126. Vogel, M., Brinkmann, C., Eckert, H. & Heuer, A. (2004) Phys. Rev. B, 69.

    Google Scholar 

  127. Schmidt-Rohr, K., deAzevedo, E.R. & Bonagamba, T.J. (2002) NMR Ency. 9:Advances in NMR 633–642.

    Google Scholar 

  128. DeAzevedo, E.R., Kennedy, S.B. & Hong, M. (2000) Chem. Phys. Lett. 321, 43–48.

    ADS  Google Scholar 

  129. Kaji, H. & Schmidt-Rohr, K (2002) Macromolecules 35, 7993–8004.

    ADS  Google Scholar 

  130. Buffy, J.J., Waring, A.J. & Hong, M. (2005) J. Am. Chem. Soc. 127, 4477–4483.

    Google Scholar 

  131. Saalwächter, K. & Schmidt-Rohr, K. (2000) J. Magn. Reson. 145, 161–172.

    ADS  Google Scholar 

  132. Henrichs, P.M. & Linder, M. (1984) J. Magn. Reson. 58, 458–461.

    Google Scholar 

  133. Edzes, H.T. & Bernards, J.P.C. (1984) J. Am. Chem. Soc. 106, 1515–1517.

    Google Scholar 

  134. Dabbagh, G., Weliky, D.P. & Tycko, R. (1994) Macromolecules 27, 6183–6191.

    ADS  Google Scholar 

  135. Tomita, Y., Oconnor, E.J. & McDermott, A. (1994)J. Am. Chem. Soc. 116, 8766–8771.

    Google Scholar 

  136. Weliky, D.P., Dabbagh, G. & Tycko, R. (1993) J. Magn. Reson. Series A, 104, 10–16.

    Google Scholar 

  137. Nakai, T. & McDowell, C.A. (1994) Chem. Phys. Lett. 217, 234–238.

    ADS  Google Scholar 

  138. Raleigh, D.P., Creuzet, F., Gupta, S.K.D., Levitt, M.H. & Griffin, R.G. (1989) J. Am. Chem. Soc. 111, 4502–4503.

    Google Scholar 

  139. Pan, Y., Gullion, T. & Schaefer, J. (1990) J. Magn. Reson. 90, 330–340.

    Google Scholar 

  140. King, A.W., Vega, S. & Schaefer, J. (1992) J. Magn. Reson. 96, 205–209.

    Google Scholar 

  141. Gottwald, J., Demco, D.E., Graf, R. & Spiess, H.W. (1995) Chem. Phys. Lett. 243, 314–323.

    ADS  Google Scholar 

  142. Schmidt-Rohr, K. (1996) Macromolecules 29, 3975–3981.

    ADS  Google Scholar 

  143. Schmidt-Rohr, K. (1998) J. Magn. Reson. 131, 209–217.

    ADS  Google Scholar 

  144. Harris, D.J., Bonagamba, T.J. & Schmidt-Rohr, K. (1999) Macromolecules 32, 6718–6724.

    ADS  Google Scholar 

  145. Harris, D.J., Bonagamba, T.J., Hong, M. & Schmidt-Rohr, K. (2000) Macromole-cules 33, 3375–3381.

    ADS  Google Scholar 

  146. Harris, D.J., Bonagamba, TJ. & Schmidt-Rohr, K. (2002) Macromolecules 35, 5724–5726.

    ADS  Google Scholar 

  147. Bax, A., Freeman, R. & Kempsell, S.P. (1980) J. Am. Chem. Soc. 102, 4849–4851.

    Google Scholar 

  148. Nakai, T. & McDowell, C.A. (1993) Mol. Phys. 79, 965–983.

    ADS  Google Scholar 

  149. Nakai, T. & McDowell, C.A. (1993) J. Magn. Reson., Ser A104, 146–153.

    Google Scholar 

  150. Takahashi, Y. & Tadokoro, H. (1973) Macromolecules 6, 672–675.

    ADS  Google Scholar 

  151. Spevacek, J., Paternostre, L., Damman, P., Draye, A.C. & Dosiere, M. (1998) Macromolecules 31, 3612–3616.

    ADS  Google Scholar 

  152. Myasnikova, R.M., Titova, E.F. & Obolonkova, E.S. (1980) Polymer 21, 403–407.

    Google Scholar 

  153. Point, J.J. & Coutelier, C. (1985) J. Polym. ScL, PartB: Polym. Phys. 23, 231–239.

    ADS  Google Scholar 

  154. Damman, P. & Point, J.J. (1994) Macromolecules 27, 3919–3925.

    ADS  Google Scholar 

  155. Spevacek, J. & Suchoparek, M. (1997) Macromol. Symp. 114, 23–34.

    Google Scholar 

  156. Hong, M. (1999) J. Magn. Reson. 136, 86–91.

    ADS  Google Scholar 

  157. Rienstra, C.M., Hatcher, M.E., Mueller, L.J., Sun, B.Q., Fesik, S.W. & Griffin, R.G. (1998) J. Am. Chem. Soc. 120, 10602–10612.

    Google Scholar 

  158. Harris, D.J., Bonagamba, T.J., Hong, M. & Schmidt-Rohr, K (2005) Polymer (in press).

    Google Scholar 

  159. Dunbar, M.G., Novak, B.M. & Schmidt-Rohr, K. (1998) Solid State Nucl. Magn. Reson. 12, 119–137.

    Google Scholar 

  160. Kaji, H. & Schmidt-Rohr, K. (2000) Macromolecules 33, 5169–5180.

    ADS  Google Scholar 

  161. Kaji, H. & Schmidt-Rohr, K. (2001) Macromolecules 34, 7368–7381.

    ADS  Google Scholar 

  162. van Beek, J.D., Beaulieu, L., Schafer, H., Demura, M., Asakura, T. & Meier, B.H. (2000) Nature 405, 1077–1079.

    ADS  Google Scholar 

  163. Tycko, R. (2001) Ann. Rev. Phys. Chem. 52, 575–606.

    ADS  Google Scholar 

  164. van Beek, J.D., Meier, B.H. & Schafer, H. (2003) J. Magn. Reson. 162, 141–157.

    ADS  Google Scholar 

  165. Feike, M., Graf, R., Schnell, I., Jager, C. & Spiess, H.W. (1996) J. Am. Chem. Soc. 118, 9631–9634.

    Google Scholar 

  166. Glock, K., Hirsch, O., Rehak, P., Thomas, B. & Jager, C. (1998) J. Non-Cryst. Solids 234, 113–118.

    Google Scholar 

  167. Witter, R., Hartmann, P., Vogel, J. & Jager, C. (1998) Solid State Nucl. Magn. Reson. 13, 189–200.

    Google Scholar 

  168. Montagne, L., Palavit, G., Shaim, A., Et-Tabirou, M., Hartmann, P. & Jager, C. (2001) J. Non-Cryst. Solids 293, 719–725.

    ADS  Google Scholar 

  169. Olivier, L., Yuan, X., Cormack, A.N. & Jager, C. (2001) J. Non-Cryst. Solids 293, 53–66.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

deAzevedo, E.R., Bonagamba, T.J. (2006). NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY. In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_1

Download citation

Publish with us

Policies and ethics