Skip to main content

Tight Junction Proteins and Cancer

  • Chapter
Tight Junctions

Abstract

The tight junction (TJ) has been the subject of intense investigations since its discovery in the early 1960s. It has long been recognized as a key determinant of the epithelial cell barrier function, but only recendy has the role of the TJ in the control of cellular proliferation and differentiation been appreciated. Identification of the molecular components of the TJ has shown that, in addition to their structural functions, these proteins also regulate both signal transduction emanating from the plasma membrane and gene expression in the nucleus. In addition, studies of human tumors reveal a direct correlation between the loss of functional TJs in cancer progression and metastasis, and several different mutant mice lacking specific TJ proteins develop hyperproliferative disorders. Work conducted in vitro with cell lines has provided additional evidence that the loss of TJ proteins can promote transformation, as well as increased metastatic potential. Intriguingly, the tumorigenic potential of several different viral oncoproteins is also linked to their ability to disrupt TJs. In summary, studies directed at determining the mechanisms whereby the TJ controls cellular proliferation and motility are expected to aid in the development of new effective strategies for treating and preventing human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mori M, Sawada N, Kokai Y et al. Role of tight junctions in the occurrence of cancer invasion and metastasis. Med Electron Microsc 1999; 32(4):193–198.

    PubMed  Google Scholar 

  2. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 1996; 156(3):217–226.

    PubMed  CAS  Google Scholar 

  3. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84(3):345–357.

    Article  PubMed  CAS  Google Scholar 

  4. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17:375–412.

    Article  PubMed  CAS  Google Scholar 

  5. Lallemand D, Curto M, Saotome I et al. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 2003; 17(9):1090–1100.

    Article  PubMed  CAS  Google Scholar 

  6. Yajnik V, Paulding C, Sordella R et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 2003; 112(5):673–684.

    Article  PubMed  CAS  Google Scholar 

  7. Furuse M, Hirase T, Itoh M et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123(6 Pt 2):1777–1788.

    Article  PubMed  CAS  Google Scholar 

  8. Martin-Padura I, Lostaglio S, Schneemann M et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142(1):117–127.

    Article  PubMed  CAS  Google Scholar 

  9. Aurrand-Lions M, Johnson-Leger C, Wong C et al. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 2001; 98(13):3699–3707.

    Article  PubMed  CAS  Google Scholar 

  10. Furuse M, Fujita K, Hiiragi T et al. Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141(7):1539–1550.

    Article  PubMed  CAS  Google Scholar 

  11. Morita K, Furuse M, Fujimoto K et al. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 1999; 96(2):511–516.

    Article  PubMed  CAS  Google Scholar 

  12. Fujimoto K. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 1995; 108 (Pt 11):3443–3449.

    PubMed  CAS  Google Scholar 

  13. Saitou M, Ando-Akatsuka Y, Itoh M et al. Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol 1997; 73(3):222–231.

    PubMed  CAS  Google Scholar 

  14. Furuse M, Sasaki H, Fujimoto K et al. A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 1998; 143(2):391–401.

    Article  PubMed  CAS  Google Scholar 

  15. Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 1999; 9(7):268–273.

    Article  PubMed  CAS  Google Scholar 

  16. Furuse M, Itoh M, Hirase T et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127(6 Pt 1):1617–1626.

    Article  PubMed  CAS  Google Scholar 

  17. Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 1999; 274(9):5981–5986.

    Article  PubMed  CAS  Google Scholar 

  18. Haskins J, Gu L, Wittchen ES et al. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141(1):199–208.

    Article  PubMed  CAS  Google Scholar 

  19. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274(49):35179–35185.

    Article  PubMed  CAS  Google Scholar 

  20. Sheth P, Basuroy S, Li C et al. Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 2003; 278(49):49239–49245.

    Article  PubMed  CAS  Google Scholar 

  21. Nusrat A, Chen JA, Foley CS et al. The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 2000; 275(38):29816–29822.

    Article  PubMed  CAS  Google Scholar 

  22. Balda MS, Whitney JA, Flores C et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 1996;134(4):1031–1049.

    Article  PubMed  CAS  Google Scholar 

  23. Aurrand-Lions M, Duncan L, Ballestrem C et al. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001; 276(4):2733–2741.

    Article  PubMed  CAS  Google Scholar 

  24. Bazzoni G. The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 2003; 15(5):525–530.

    Article  PubMed  CAS  Google Scholar 

  25. Liang TW, DeMarco RA, Mrsny RJ et al. Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation. Am J Physiol Cell Physiol 2000; 279(6):C1733–1743.

    PubMed  CAS  Google Scholar 

  26. Itoh M, Sasaki H, Furuse M et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001; 154(3):491–497.

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Nusrat A, Schnell FJ et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113 (Pt 13):2363–2374.

    PubMed  CAS  Google Scholar 

  28. Hamazaki Y, Itoh M, Sasaki H et al. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem. 2002; 277(1):455–461.

    Article  PubMed  CAS  Google Scholar 

  29. Bazzoni G, Martinez-Estrada OM, Orsenigo F et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000; 275(27):20520–20526.

    Article  PubMed  CAS  Google Scholar 

  30. Hirabayashi S, Tajima M, Yao I et al. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol. 2003; 23(12):4267–4282.

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto T, Harada N, Kano K et al. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 1997; 139(3):785–795.

    Article  PubMed  CAS  Google Scholar 

  32. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275(36):27979–27988.

    PubMed  CAS  Google Scholar 

  33. Heiskala M, Peterson PA, Yang Y. The roles of claudin superfamily proteins in paracellular transport. Traffic 2001; 2(2):93–98.

    Article  PubMed  CAS  Google Scholar 

  34. Morita K, Sasaki H, Fujimoto K et al. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 1999; 145(3):579–588.

    Article  PubMed  CAS  Google Scholar 

  35. Roh MH, Liu CJ, Laurinec S et al. The carboxyl terminus of zona ocdudens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 2002; 277(30):27501–27509.

    Article  PubMed  CAS  Google Scholar 

  36. Itoh M, Furuse M, Morita K et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147(6):1351–1363.

    Article  PubMed  CAS  Google Scholar 

  37. Stevenson BR, Siliciano JD, Mooseker MS et al. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula ocdudens) in a variety of epithelia. J Cell Biol 1986; 103(3):755–766.

    Article  PubMed  CAS  Google Scholar 

  38. Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol 1994; 124(6):949–961.

    Article  PubMed  CAS  Google Scholar 

  39. Roh MH, Makarova O, Liu CJ et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 2002; 157(1):161–172.

    Article  PubMed  CAS  Google Scholar 

  40. Wu Y, Dowbenko D, Spencer S et al. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000; 275(28):21477–21485.

    Article  PubMed  CAS  Google Scholar 

  41. Ide N, Hata Y, Nishioka H et al. Localization of membrane-associated guanylate kinase (MAGI)-1/BAI-associated protein (BAP) 1 at tight junctions of epithelial cells. Oncogene 1999; 18(54):7810–7815.

    Article  PubMed  CAS  Google Scholar 

  42. Laura RP, Ross S, Koeppen H et al. MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res 2002; 275(2):155–170.

    Article  PubMed  CAS  Google Scholar 

  43. Izumi Y, Hirose T, Tamai Y et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998; 143(1):95–106.

    Article  PubMed  CAS  Google Scholar 

  44. Joberty G, Petersen C, Gao L et al. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2000; 2(8):531–539.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000; 11(4):315–324.

    Article  PubMed  CAS  Google Scholar 

  46. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001; 24:1–29.

    Article  PubMed  CAS  Google Scholar 

  47. Roh MH, Margolis B. Composition and function of PDZ protein complexes during cell polarization. Am J Physiol Renal Physiol 2003; 285(3):F377–387.

    PubMed  Google Scholar 

  48. Hurd TW, Gao L, Roh MH et al. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5(2):137–142.

    Article  PubMed  CAS  Google Scholar 

  49. Straight SW, Shin K, Fogg VC et al. Loss of PALS1 Expression Leads to Tight Junction and Polarity Defects. Mol Biol Cell 2004; 15(4):1981–1990.

    Article  PubMed  CAS  Google Scholar 

  50. Reichert M, Muller T, Hunziker W. The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 2000; 275(13):9492–9500.

    Article  PubMed  CAS  Google Scholar 

  51. Wittchen ES, Haskins J, Stevenson BR. Exogenous expression of the amino-terminal half of the tight junction protein ZO-3 perturbs junctional complex assembly. J Cell Biol 2000; 151(4):825–836.

    Article  PubMed  CAS  Google Scholar 

  52. Wittchen ES, Haskins J, Stevenson BR. NZO-3 expression causes global changes to actin cytoskeleton in Madin-Darby canine kidney cells: linking a tight junction protein to Rho GTPases. Mol Biol Cell 2003; 14(5):1757–1768.

    Article  PubMed  CAS  Google Scholar 

  53. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol 2002; 12(3):221–225.

    Article  PubMed  CAS  Google Scholar 

  54. Ryeom SW, Paul D, Goodenough DA. Truncation mutants of the tight junction protein ZO-1 disrupt corneal epithelial cell morphology. Mol Biol Cell 2000; 11(5):1687–1696.

    PubMed  CAS  Google Scholar 

  55. Citi S, Sabanay H, Jakes R et al. Cingulin, a new peripheral component of tight junctions. Nature 1988; 333(6170):272–276.

    Article  PubMed  CAS  Google Scholar 

  56. Zhong Y, Saitoh T, Minase T et al. Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol 1993; 120(2):477–483.

    Article  PubMed  CAS  Google Scholar 

  57. Saha C, Nigam SK, Denker BM. Involvement of Galphai2 in the maintenance and biogenesis of epithelial cell tight junctions. J Biol Chem 1998; 273(34):21629–21633.

    Article  PubMed  CAS  Google Scholar 

  58. Denker BM, Saha C, Khawaja S et al. Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J Biol Chem 1996; 271(42):25750–25753.

    Article  PubMed  CAS  Google Scholar 

  59. Nunbhakdi-Craig V, Machleidt T, Ogris E et al. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 2002; 158(5):967–978.

    Article  PubMed  CAS  Google Scholar 

  60. Avila-Flores A, Rendon-Huerta E, Moreno J et al. Tight-junction protein zonula occludens 2 is a target of phosphorylation by protein kinase C. Biochem J 2001; 360 (Pt 2):295–304.

    Article  PubMed  CAS  Google Scholar 

  61. Nagai-Tamai Y, Mizuno K, Hirose T et al. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 2002; 7(11):1161–1171.

    Article  PubMed  CAS  Google Scholar 

  62. Mullin JM, Laughlin KV, Ginanni N et al. Increased tight junction permeability can result from protein kinase C activation/translocation and act as a tumor promotional event in epithelial cancers. Ann N Y Acad Sci 2000; 915:231–236.

    Article  PubMed  CAS  Google Scholar 

  63. Yoo J, Nichols A, Mammen J et al. Bryostatin-1 enhances barrier function in T84 epithelia through PKC-dependent regulation of tight junction proteins. Am J Physiol Cell Physiol 2003; 285(2):C300–309.

    PubMed  CAS  Google Scholar 

  64. Jacinto A, Martinez-Arias A, Martin P. Mechanisms of epithelial fusion and repair. Nat Cell Biol 2001; 3(5):E117–123.

    Article  PubMed  CAS  Google Scholar 

  65. Vermeer PD, Einwalter LA, Moninger TO et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 2003; 422(6929):322–326.

    Article  PubMed  CAS  Google Scholar 

  66. Swift JG, Mukherjee TM, Rowland R. Intercellular junctions in hepatocellular carcinoma. J Submicrosc Cytol 1983; 15(3):799–810.

    PubMed  CAS  Google Scholar 

  67. Cochand-Priollet B, Raison D, Molinie V et al. Altered gap and tight junctions in human thyroid oncocytic tumors: a study of 8 cases by freeze-fracture. Ultrastruct Pathol 1998; 22(6):413–420.

    Article  PubMed  CAS  Google Scholar 

  68. Soler AP, Miller RD, Laughlin KV et al. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 1999; 20(8):1425–1431.

    Article  PubMed  CAS  Google Scholar 

  69. Woods DF, Bryant PJ. Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev Biol 1989; 134(1):222–235.

    Article  PubMed  CAS  Google Scholar 

  70. Willott E, Balda MS, Fanning AS et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 1993; 90(16):7834–7838.

    Article  PubMed  CAS  Google Scholar 

  71. Gottardi CJ, Arpin M, Fanning AS et al. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci USA 1996; 93(20):10779–10784.

    Article  PubMed  CAS  Google Scholar 

  72. Islas S, Vega J, Ponce L et al. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002; 274(1):138–148.

    Article  PubMed  CAS  Google Scholar 

  73. Morin PJ, Sparks AB, Korinek V et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275(5307):1787–1790.

    Article  PubMed  CAS  Google Scholar 

  74. He TC, Sparks AB, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281(5382):1509–1512.

    Article  PubMed  CAS  Google Scholar 

  75. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726):422–426.

    Article  PubMed  CAS  Google Scholar 

  76. Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96(10):5522–5527.

    Article  PubMed  CAS  Google Scholar 

  77. Mann B, Gelos M, Siedow A et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Nad Acad Sci USA 1999; 96(4):1603–1608.

    Article  CAS  Google Scholar 

  78. Martin TA, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol 2001; 16(4):1183–1195.

    PubMed  CAS  Google Scholar 

  79. Papadopoulos MC, Saadoun S, Woodrow CJ et al. Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol 2001; 27(5):384–395.

    Article  PubMed  CAS  Google Scholar 

  80. Liebner S, Fischmann A, Rascher G et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 2000; 100(3):323–331.

    Article  PubMed  CAS  Google Scholar 

  81. Groothuis DR, Vriesendorp FJ, Kupfer B et al. Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann Neurol 1991; 30(4):581–588.

    Article  PubMed  CAS  Google Scholar 

  82. Quan C, Lu SJ. Identification of genes preferentially expressed in mammary epithelial cells of Copenhagen rat using subtractive hybridization and microarrays. Carcinogenesis 2003; 24(10):1593–1599.

    Article  PubMed  CAS  Google Scholar 

  83. Zhong Y, Enomoto K, Tobioka H et al. Sequential decrease in tight junctions as revealed by 7H6 tight junction-associated protein during rat hepatocarcinogenesis. Jpn J Cancer Res 1994; 85(4):351–356.

    PubMed  CAS  Google Scholar 

  84. Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153(6):1767–1773.

    PubMed  CAS  Google Scholar 

  85. Rangel LB, Agarwal R, D’Souza T et al. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 2003; 9(7):2567–2575.

    PubMed  CAS  Google Scholar 

  86. Saitou M, Furuse M, Sasaki H et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11(12):4131–4142.

    PubMed  CAS  Google Scholar 

  87. Michl P, Barth C, Buchholz M et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res 2003; 63(19):6265–6271.

    PubMed  CAS  Google Scholar 

  88. Nichols LS, Ashfaq R, Iacobuzio-Donahue CA. Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. Am J Clin Pathol 2004; 121(2):226–230.

    Article  PubMed  CAS  Google Scholar 

  89. Saito S, Sirahama S, Matsushima M et al. Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res 1996; 56(24):5586–5589.

    PubMed  CAS  Google Scholar 

  90. Prasad R, Gu Y, Alder H et al. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 1993; 53(23):5624–5628.

    PubMed  CAS  Google Scholar 

  91. Zhadanov AB, Provance DW, Jr., Speer CA et al. Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 1999; 9(16):880–888.

    Article  PubMed  CAS  Google Scholar 

  92. Wu X, Hepner K, Castelino-Prabhu S et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 2000; 97(8):4233–4238.

    Article  PubMed  CAS  Google Scholar 

  93. Wu X, Senechal K, Neshat MS et al. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95(26):15587–15591.

    Article  PubMed  CAS  Google Scholar 

  94. Stambolic V, Tsao MS, Macpherson D et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/-mice. Cancer Res 2000; 60(13):3605–3611.

    PubMed  CAS  Google Scholar 

  95. Podsypanina K, Ellenson LH, Nemes A et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999; 96(4):1563–1568.

    Article  PubMed  CAS  Google Scholar 

  96. Di Cristofano A, Pesce B, Cordon-Cardo C et al. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998; 19(4):348–355.

    Article  PubMed  Google Scholar 

  97. Takahisa M, Togashi S, Suzuki T et al. The Drosophila tamou gene, a component of the activating pathway of extramacrochaetae expression, encodes a protein homologous to mammalian cell-cell junction-associated protein ZO-1. Genes Dev 1996; 10(14):1783–1795.

    PubMed  CAS  Google Scholar 

  98. Li D, Mrsny RJ. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 2000; 148(4):791–800.

    Article  PubMed  CAS  Google Scholar 

  99. Swisshelm K, Machl A, Planitzer S et al. SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 1999; 226(2):285–295.

    Article  PubMed  CAS  Google Scholar 

  100. Hoevel T, Macek R, Mundigl O et al. Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell Physiol 2002; 191(1):60–68.

    Article  PubMed  Google Scholar 

  101. Inai T, Kobayashi J, Shibata Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 1999; 78(12):849–855.

    PubMed  CAS  Google Scholar 

  102. Hoevel T, Macek R, Swisshelm K et al. Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 2004; 108(3):374–383.

    Article  PubMed  CAS  Google Scholar 

  103. Ikenouchi J, Matsuda M, Furuse M et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116 (Pt 10):1959–1967.

    Article  PubMed  CAS  Google Scholar 

  104. Kim SK. Cell polarity: new PARtners for Cdc42 and Rac. Nat Cell Biol 2000; 2(8):E143–145.

    Article  PubMed  CAS  Google Scholar 

  105. Lin D, Edwards AS, Fawcett JP et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2(8):540–547.

    Article  PubMed  CAS  Google Scholar 

  106. Qiu RG, Abo A, Steven Martin G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr Biol 2000; 10(12):697–707.

    Article  PubMed  CAS  Google Scholar 

  107. Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160(3):423–432.

    Article  PubMed  CAS  Google Scholar 

  108. Betanzos A, Huerta M, Lopez-Bayghen E et al. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292(1):51–66.

    Article  PubMed  CAS  Google Scholar 

  109. Traweger A, Fuchs R, Krizbai IA et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003; 278(4):2692–2700.

    Article  PubMed  CAS  Google Scholar 

  110. Oesterreich S, Allredl DC, Mohsin SK et al. High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer. Br J Cancer 2001; 84(4):493–498.

    Article  PubMed  CAS  Google Scholar 

  111. Townson SM, Sullivan T, Zhang Q et al. HET/SAF-B overexpression causes growth arrest and multinuclearity and is associated with aneuploidy in human breast cancer. Clin Cancer Res 2000; 6(9):3788–3796.

    PubMed  CAS  Google Scholar 

  112. Glaunsinger BA, Weiss RS, Lee SS et al. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 2001; 20(20):5578–5586.

    Article  PubMed  CAS  Google Scholar 

  113. Mino A, Ohtsuka T, Inoue E et al. Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight junctions. Genes Cells 2000; 5(12):1009–1016.

    Article  PubMed  CAS  Google Scholar 

  114. Dobrosotskaya IY. Identification of mNET1 as a candidate ligand for the first PDZ domain of MAGI-1. Biochem Biophys Res Commun 2001; 283(4):969–975.

    Article  PubMed  CAS  Google Scholar 

  115. Liao Y, Satoh T, Gao X et al. RA-GEF-1, a guanine nucleotide exchange factor for Rap1, is activated by translocation induced by association with Rap1*GTP and enhances Rap1-dependent B-Raf activation. J Biol Chem 2001; 276(30):28478–28483.

    Article  PubMed  CAS  Google Scholar 

  116. Alberts AS, Treisman R. Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1. EMBO J 1998; 17(14):4075–4085.

    Article  PubMed  CAS  Google Scholar 

  117. Chan AM, Takai S, Yamada K et al. Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 1996; 12(6):1259–1266.

    PubMed  CAS  Google Scholar 

  118. Jeansonne B, Lu Q, Goodenough DA et al. Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells. Cell Mol Biol (Noisy-le-grand) 2003; 49(1):13–21.

    PubMed  CAS  Google Scholar 

  119. Barritt DS, Pearn MT, Zisch AH et al. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 2000; 79(2):213–224.

    Article  PubMed  CAS  Google Scholar 

  120. Mancini A, Koch A, Stefan M et al. The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity. FEBS Lett 2000; 482(1–2):54–58.

    Article  PubMed  CAS  Google Scholar 

  121. Burg MA, Grako KA, Stallcup WB. Expression of the NG2 proteoglycan enhances the growth and metastatic properties of melanoma cells. J Cell Physiol 1998; 177(2):299–312.

    Article  PubMed  CAS  Google Scholar 

  122. Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res 2003; 16(3):287–296.

    Article  PubMed  CAS  Google Scholar 

  123. Chen Y, Lu Q, Schneeberger EE et al. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 2000; 11(3):849–862.

    PubMed  CAS  Google Scholar 

  124. Grande M, Franzen A, Karlsson JO et al. Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115 (Pt 22):4227–4236.

    Article  PubMed  CAS  Google Scholar 

  125. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278(5701):261–263.

    Article  PubMed  CAS  Google Scholar 

  126. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  127. Querido E, Marcellus RC, Lai A et al. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 1997; 71(5):3788–3798.

    PubMed  CAS  Google Scholar 

  128. Sarnow P, Ho YS, Williams J et al. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 1982; 28(2):387–394.

    Article  PubMed  CAS  Google Scholar 

  129. Scheffner M, Werness BA, Huibregtse JM et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63(6):1129–1136.

    Article  PubMed  CAS  Google Scholar 

  130. Whitman M, Kaplan DR, Schaffhausen B et al. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985; 315(6016):239–242.

    Article  PubMed  CAS  Google Scholar 

  131. Arany Z, Sellers WR, Livingston DM et al. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 1994; 77(6):799–800.

    Article  PubMed  CAS  Google Scholar 

  132. DeCaprio JA, Ludlow JW, Figge J et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54(2):275–283.

    Article  PubMed  CAS  Google Scholar 

  133. Whyte P, Buchkovich KJ, Horowitz JM et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334(6178):124–129.

    Article  PubMed  CAS  Google Scholar 

  134. Munoz N, Bosch FX, de Sanjose S et al. The role of HPV in the etiology of cervical cancer. Mutat Res 1994; 305(2):293–301.

    PubMed  CAS  Google Scholar 

  135. Nguyen ML, Nguyen MM, Lee D et al. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol 2003; 77(12):6957–6964.

    Article  PubMed  CAS  Google Scholar 

  136. Elbel M, Carl S, Spaderna S et al. A comparative analysis of the interactions of the E6 proteins from cutaneous and genital papillomaviruses with p53 and E6AP in correlation to their transforming potential. Virology 1997; 239(1):132–149.

    Article  PubMed  CAS  Google Scholar 

  137. Kiyono T, Foster SA, Koop JI et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396(6706):84–88.

    Article  PubMed  CAS  Google Scholar 

  138. Lee SS, Glaunsinger B, Mantovani F et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 2000; 74(20):9680–9693.

    Article  PubMed  CAS  Google Scholar 

  139. Glaunsinger BA, Lee SS, Thomas M et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 2000; 19(46):5270–5280.

    Article  PubMed  CAS  Google Scholar 

  140. Thomas M, Glaunsinger B, Pim D et al. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 2001; 20(39):5431–5439.

    Article  PubMed  CAS  Google Scholar 

  141. Thomas M, Laura R, Hepner K et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002; 21(33):5088–5096.

    Article  PubMed  CAS  Google Scholar 

  142. Kiyono T, Hiraiwa A, Fujita M et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997; 94(21):11612–11616.

    Article  PubMed  CAS  Google Scholar 

  143. Nguyen MM, Nguyen ML, Caruana G et al. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 2003; 23(24):8970–8981.

    Article  PubMed  CAS  Google Scholar 

  144. Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 2000; 20(21):8244–8253.

    Article  PubMed  CAS  Google Scholar 

  145. Cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta 2001; 1552(1):39–45.

    PubMed  CAS  Google Scholar 

  146. Nakagawa S, Yano T, Nakagawa K et al. Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br J Cancer 2004; 90(1):194–199.

    Article  PubMed  CAS  Google Scholar 

  147. Shah K, Nathanson N. Human exposure to SV40: review and comment. Am J Epidemiol 1976; 103(1):1–12.

    PubMed  CAS  Google Scholar 

  148. Choi YW, Lee IC, Ross SR. Requirement for the simian virus 40 small tumor antigen in tumorigenesis in transgenic mice. Mol Cell Biol 1988; 8(8):3382–3390.

    PubMed  CAS  Google Scholar 

  149. Carbone M, Pass HI, Miele L et al. New developments about the association of SV40 with human mesothelioma. Oncogene 2003; 22(33):5173–5180.

    Article  PubMed  CAS  Google Scholar 

  150. Vilchez RA, Kozinetz CA, Arrington AS et al. Simian virus 40 in human cancers. Am J Med 2003; 114(8):675–684.

    Article  PubMed  Google Scholar 

  151. Hahn WC, Dessain SK, Brooks MW et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22(7):2111–2123.

    Article  PubMed  CAS  Google Scholar 

  152. Pallas DC, Shahrik LK, Martin BL et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 1990; 60(1):167–176.

    Article  PubMed  CAS  Google Scholar 

  153. Scheidtmann KH, Mumby MC, Rundell K et al. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol Cell Biol 1991; 11(4):1996–2003.

    PubMed  CAS  Google Scholar 

  154. Nunbhakdi-Craig V, Craig L, Machleidt T et al. Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J Virol 2003; 77(5):2807–2818.

    Article  PubMed  CAS  Google Scholar 

  155. Braithwaite AW, Cheetham BF, Li P et al. Adenovirus-induced alterations of the cell growth cycle: a requirement for expression of E1A but not of E1B. J Virol 1983; 45(1):192–199.

    PubMed  CAS  Google Scholar 

  156. Chinnadurai G. Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 2004; 273:139–161.

    PubMed  CAS  Google Scholar 

  157. Fischer RS, Quinlan MP. The C terminus of E1A regulates tumor progression and epithelial cell differentiation. Virology 1998; 249(2):427–439.

    Article  PubMed  CAS  Google Scholar 

  158. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92(23):10467–10471.

    Article  PubMed  CAS  Google Scholar 

  159. Zhang Z, Smith MM, Mymryk JS. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 2001; 12(3):699–710.

    PubMed  CAS  Google Scholar 

  160. Poser I, Golob M, Weidner M et al. Down-regulation of COOH-terminal binding protein expression in malignant melanomas leads to induction of MIA expression. Cancer Res 2002; 62(20):5962–5966.

    PubMed  CAS  Google Scholar 

  161. Becker W, Joost HG. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 1999; 62:1–17.

    Article  PubMed  CAS  Google Scholar 

  162. Thomas DL, Shin S, Jiang BH et al. Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. J Virol 1999; 73(4):3071–3079.

    PubMed  CAS  Google Scholar 

  163. Weiss RS, Gold MO, Vogel H et al. Mutant adenovirus type 9 E4 ORF1 genes define three protein regions required for transformation of CREF cells. J Virol 1997; 71(6):4385–4394.

    PubMed  CAS  Google Scholar 

  164. Frese KK, Lee SS, Thomas DL et al. Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 2003; 22(5):710–721.

    Article  PubMed  CAS  Google Scholar 

  165. Gatza ML, Watt JC, Marriott SJ. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene 2003; 22(33):5141–5149.

    Article  PubMed  CAS  Google Scholar 

  166. Hirata A, Higuchi M, Niinuma A et al. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology 2004; 318(1):327–336.

    Article  PubMed  CAS  Google Scholar 

  167. Ohashi M, Sakurai M, Higuchi M et al. Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 2004; 320(1):52–62.

    Article  PubMed  CAS  Google Scholar 

  168. Kimura Y, Shiozaki H, Hirao M et al. Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 1997; 151(1):45–54.

    PubMed  CAS  Google Scholar 

  169. Yin F, Qiao T, Shi Y et al. [In situ hybridization of tight junction molecule occludin mRNA in gastric cancer]. Zhonghua Zhong Liu Za Zhi 2002; 24(6):557–560.

    PubMed  CAS  Google Scholar 

  170. Busch C, Hanssen TA, Wagener C et al. Down-regulation of CEACAM1 in human prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition. Hum Pathol 2002; 33(3):290–298.

    Article  PubMed  CAS  Google Scholar 

  171. Tobioka H, Isomura H, Kokai Y et al. Polarized distribution of carcinoembryonic antigen is associated with a tight junction molecule in human colorectal adenocarcinoma. J Pathol 2002; 198(2):207–212.

    Article  PubMed  CAS  Google Scholar 

  172. Tobioka H, Isomura H, Kokai Y et al. Occludin expression decreases with the progression of human endometrial carcinoma. Hum Pathol 2004; 35(2):159–164.

    Article  PubMed  CAS  Google Scholar 

  173. Miwa N, Furuse M, Tsukita S et al. Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res 2000; 12(11–12):469–476.

    CAS  Google Scholar 

  174. Long H, Crean CD, Lee WH et al. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res 2001; 61(21):7878–7881.

    PubMed  CAS  Google Scholar 

  175. Hough CD, Sherman-Baust CA, Pizer ES et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 2000; 60(22):6281–6287.

    PubMed  CAS  Google Scholar 

  176. Terris B, Blaveri E, Crnogorac-Jurcevic T et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 2002; 160(5):1745–1754.

    PubMed  CAS  Google Scholar 

  177. Kominsky SL, Argani P, Korz D et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22(13):2021–2033.

    Article  PubMed  CAS  Google Scholar 

  178. Al Moustafa AE, Alaoui-Jamali MA, Batist G et al. Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 2002; 21(17):2634–2640.

    Article  PubMed  CAS  Google Scholar 

  179. Rangel LB, Sherman-Baust CA, Wernyj RP et al. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene 2003; 22(46):7225–7232.

    Article  PubMed  CAS  Google Scholar 

  180. Katoh M. CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med 2003; 11(6):683–689.

    PubMed  CAS  Google Scholar 

  181. Kaihara T, Kusaka T, Nishi M et al. Dedifferentiation and decreased expression of adhesion molecules, E-cadherin and ZO-1, in colorectal cancer are closely related to liver metastasis. J Exp Clin Cancer Res 2003; 22(1):117–123.

    PubMed  CAS  Google Scholar 

  182. Kaihara T, Kawamata H, Imura J et al. Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer: possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1. Cancer Sci 2003; 94(2):166–172.

    Article  PubMed  CAS  Google Scholar 

  183. Kleeff J, Shi X, Bode HP et al. Altered expression and localization of the tight junction protein ZO-1 in primary and metastatic pancreatic cancer. Pancreas 2001; 23(3):259–265.

    Article  PubMed  CAS  Google Scholar 

  184. Chlenski A, Ketels KV, Tsao MS et al. Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma. Int J Cancer 1999; 82(1):137–144.

    Article  PubMed  CAS  Google Scholar 

  185. Chlenski A, Ketels KV, Korovaitseva GI et al. Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim Biophys Acta 2000; 1493(3):319–324.

    PubMed  CAS  Google Scholar 

  186. Fang CM, Xu YH. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas. Cell Res 2001; 11(3):223–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Latorre, I.J., Frese, K.K., Javier, R.T. (2006). Tight Junction Proteins and Cancer. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_9

Download citation

Publish with us

Policies and ethics