Skip to main content

TJ Proteins That Make Round Trips to the Nucleus

  • Chapter
Tight Junctions

Abstract

The tight junction (TJ) located at the limit between the apical and basolateral plasma membranes, is a multiprotein complex integrated by both integral and cortical proteins. Through TJ epithelial cells establish a link with their neighbors that seals the paracellular pathway. Lately some TJ proteins like the MAGUK ZO-1 and ZO-2, MAGI 1c, as well as the unrelated proteins symplekin and ubinuclein, have been found to concentrate at the nucleus. In this chapter we describe such proteins and how their arrival to the nucleus is connected to the degree of cell-cell contact. We analyze the signals present in these TJ proteins that may be responsible for their movement from the membrane to the nucleus and vice-versa. We then detail, the interaction of these proteins to nuclear molecules involved in gene transcription, chromatin remodeling, RNA processing and polyadenylation.

In recent times, cell biologists have begun to recognize the dual location of certain proteins within the same cells. Such proteins appear to work as general constituents of two distant and different structures: they work as submembranous components of intercellular junctions and are also located in karyoplasms, Cajal bodies, or spliceosomes even in cells devoid of cell-cell junctions. Such proteins have recently been referred as NACos, for proteins that can localize to the nucleus and adhesion complexes.

This chapter will deal with TJ proteins that shuttle between the plasma membrane and the nucleus. In all the cases so far studied, the subcellular distribution of the TJ NACo proteins is sensitive to the degree of cell-cell contact. Thus in epithelia cultured in a sparse condition, TJ NACos concentrate at the nucleus, whereas in a confluent state, they accumulate at the TJ and only a negligible proportion is maintained at the nucleus. Such behavior suggests that these proteins that mediate intercellular adhesion, also transmit information to the cell interior about the environment, such as the lack of neighboring cells. This information is crucial for deter-mining epithelial behavior, especially for keeping the balance between proliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balda MS, Matter K. Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 2003;13(6):310–318.

    Article  PubMed  CAS  Google Scholar 

  2. Birchmeier W, Hulsken J, Behrens J. Adherens junction proteins in tumour progression. Cancer Surv 1995;24:129–140.

    PubMed  CAS  Google Scholar 

  3. Gumbiner BM. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996;84(3):345–357.

    Article  PubMed  CAS  Google Scholar 

  4. Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 1991;66(3):451–464.

    Article  PubMed  CAS  Google Scholar 

  5. Willott E, Balda MS, Fanning AS et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 1993;90(16):7834–7838.

    Article  PubMed  CAS  Google Scholar 

  6. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: Structure and role in the tight junction. Semin Cell Dev Biol 2000;11(4):315–324.

    Article  PubMed  CAS  Google Scholar 

  7. Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: Relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998;153(6):1767–1773.

    PubMed  CAS  Google Scholar 

  8. Mauro L, Bartucci M, Morelli C et al. IGF-I receptor-induced cell-cell adhesion of MCF-7 breast cancer cells requires the expression of junction protein ZO-1. J Biol Chem 2001;276(43):39892–39897.

    Article  PubMed  CAS  Google Scholar 

  9. Palmer HG, Gonzalez-Sancho JM, Espada J et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 2001;154(2):369–387.

    Article  PubMed  CAS  Google Scholar 

  10. Chlenski A, Ketels KV, Korovaitseva GI et al. Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim Biophys Acta 2000;1493(3):319–324.

    PubMed  CAS  Google Scholar 

  11. Chlenski A, Ketels KV, Engeriser JL et al. zo-2 gene alternative promoters in normal and neoplastic human pancreatic duct cells. Int J Cancer 1999;83(3):349–358.

    Article  PubMed  CAS  Google Scholar 

  12. Chlenski A, Ketels KV, Tsao MS et al. Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma. Int J Cancer 1999;82(1):137–144.

    Article  PubMed  CAS  Google Scholar 

  13. Glaunsinger BA, Weiss RS, Lee SS et al. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 2001;20(20):5578–5586.

    Article  PubMed  CAS  Google Scholar 

  14. Glaunsinger BA, Lee SS, Thomas M et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 2000;19(46):5270–5280.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SS, Glaunsinger B, Mantovani F et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 2000;74(20):9680–9693.

    Article  PubMed  CAS  Google Scholar 

  16. Thomas M, Glaunsinger B, Pim D et al. HPV E6 and MAGUK protein interactions: Determination of the molecular basis for specific protein recognition and degradation. Oncogene 2001;20(39):5431–5439.

    Article  PubMed  CAS  Google Scholar 

  17. Pim D, Thomas M, Javier R et al. HPV E6 targeted degradation of the discs large protein: Evidence for the involvement of a novel ubiquitin ligase. Oncogene 2000;19(6):719–725.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas M, Laura R, Hepner K et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002;21(33):5088–5096.

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 2000;20(21):8244–8253.

    Article  PubMed  CAS  Google Scholar 

  20. Traweger A, Fuchs R, Krizbai IA et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003;278(4):2692–2700.

    Article  PubMed  CAS  Google Scholar 

  21. Islas S, Vega J, Ponce L et al. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002;274(1):138–148.

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Mariscal L, Chavez dR, Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 1985;86(2):113–125.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Mariscal L, Namorado MC, Martin D et al. Tight junction proteins ZO-1, ZO-2, and occludin along isolated renal tubules. Kidney Int 2000;57(6):2386–2402.

    Article  PubMed  CAS  Google Scholar 

  24. Gottardi CJ, Arpin M, Fanning AS et al. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci USA 1996;93(20):10779–10784.

    Article  PubMed  CAS  Google Scholar 

  25. Ide N, Hata Y, Nishioka H et al. Localization of membrane-associated guanylate kinase (MAGI)-l/ BAI-associated protein (BAP) 1 at tight junctions of epithelial cells. Oncogene 1999;18(54):7810–7815.

    Article  PubMed  CAS  Google Scholar 

  26. Wu X, Hepner K, Castelino-Prabhu S et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 2000;97(8):4233–4238.

    Article  PubMed  CAS  Google Scholar 

  27. Wu Y, Dowbenko D, Spencer S et al. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000;275(28):21477–21485.

    Article  PubMed  CAS  Google Scholar 

  28. Dobrosotskaya I, Guy RK, James GL. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 1997;272(50):31589–31597.

    Article  PubMed  CAS  Google Scholar 

  29. Johansson A, Driessens M, Aspenstrom P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J Cell Sci 2000;113 (Pt 18):3267–3275.

    PubMed  CAS  Google Scholar 

  30. Cline EG, Nelson WJ. Nuclear localization of mammalian Par 6. Mol Biol Cell 2003;14S:244a.

    Google Scholar 

  31. Citi S, Cordenonsi M. The molecular basis for the structure, function and regulation of tight junctions. In: Garrod DR, North AJ, Chidgey MAJ, eds. Adhesive Interactions of Cells. Greenwich: JAI Press, Inc., 1999:203–233.

    Google Scholar 

  32. Nakamura T, Blechman J, Tada S et al. huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci USA 2000;97(13):7284–7289.

    Article  PubMed  CAS  Google Scholar 

  33. Citi S, Sabanay H, Kendrick-Jones J et al. Cingulin: Characterization and localization. J Cell Sci 1989;93 (Pt 1):107–122.

    PubMed  CAS  Google Scholar 

  34. Keon BH, Schafer S, Kuhn C et al. Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996;134(4):1003–1018.

    Article  PubMed  CAS  Google Scholar 

  35. Aho S, Buisson M, Pajunen T et al. Ubinuclein, a novel nuclear protein interacting with cellular and viral transcription factors. J Cell Biol 2000;148(6):1165–1176.

    Article  PubMed  CAS  Google Scholar 

  36. Aho S. Ubinuclein a nuclear protein intracting with cellular and viral transcription factors associates with tight junctions. Mol Biol Cell 2002;13(suppl):494a.

    Google Scholar 

  37. Hicks GR, Raikhel NV. Protein import into the nucleus: An integrated view. Annu Rev Cell Dev Biol 1995;11:155–188.

    Article  PubMed  CAS  Google Scholar 

  38. Kalderon D, Richardson WD, Markham AF et al. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 1984;311(5981):33–38.

    Article  PubMed  CAS  Google Scholar 

  39. Robbins J, Dilworth SM, Laskey RA et al. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell 1991;64(3):615–623.

    Article  PubMed  CAS  Google Scholar 

  40. Jaramillo BE, Ponce A, Moreno J et al. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res, 2004;297:247–258.

    Article  PubMed  CAS  Google Scholar 

  41. Gorlich D, Mattaj IW. Nucleocytoplasmic transport. Science 1996;271(5255):1513–1518.

    Article  PubMed  CAS  Google Scholar 

  42. Nigg EA. Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature 1997;386(6627):779–787.

    Article  PubMed  CAS  Google Scholar 

  43. Nakielny S, Dreyfuss G. Nuclear export of proteins and RNAs. Curr Opin Cell Biol 1997;9(3):420–429.

    Article  PubMed  CAS  Google Scholar 

  44. Izaurralde E, Adam S. Transport of macromolecules between the nucleus and the cytoplasm. RNA 1998;4(4):351–364.

    PubMed  CAS  Google Scholar 

  45. Yoshida M, Nishikawa M, Nishi K et al. Effects of leptomycin B on the cell cycle of fibroblasts and fission yeast cells. Exp Cell Res 1990;187(1):150–156.

    Article  PubMed  CAS  Google Scholar 

  46. Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997;390(6657):308–311.

    Article  PubMed  CAS  Google Scholar 

  47. Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997;278(5335):141–l44.

    Article  PubMed  CAS  Google Scholar 

  48. Fischer U, Huber J, Boelens WC et al. The HIV-1 rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995;82(3):475–483.

    Article  PubMed  CAS  Google Scholar 

  49. Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995;82(3):463–473.

    Article  PubMed  CAS  Google Scholar 

  50. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. EMBO J 1999;18(23):6682–6693.

    Article  PubMed  CAS  Google Scholar 

  51. Nix DA, Beckerle MC. Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: A potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 1997;138(5):1139–1147.

    Article  PubMed  CAS  Google Scholar 

  52. Stommel JM, Marchenko ND, Jimenez GS et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: Regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999;18(6):1660–1672.

    Article  PubMed  CAS  Google Scholar 

  53. Luque CM, Perez-Ferreiro CM, Perez-Gonzalez A et al. An alternative domain containing a leucine-rich sequence regulates nuclear cytoplasmic localization of protein 4.1R. J Biol Chem 2003; 278(4):2686–2691.

    Article  PubMed  CAS  Google Scholar 

  54. Wada A, Fukuda M, Mishima M et al. Nuclear export of actin: A novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J 1998; 17(6):1635–1641.

    Article  PubMed  CAS  Google Scholar 

  55. Fukuda M, Gotoh I, Gotoh Y et al. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 1996; 271(33):20024–20028.

    Article  PubMed  CAS  Google Scholar 

  56. Beatch M, Jesaitis LA, Gallin WJ et al. The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region. J Biol Chem 1996; 271(42):25723–25726.

    Article  PubMed  CAS  Google Scholar 

  57. Recillas-Targa F, Razin SV. Chromatin domains and regulation of gene expression: Familiar and enigmatic clusters of chicken globin genes. Crit Rev Eukaryot Gene Expr 2001; 11(1–3):227–242.

    PubMed  CAS  Google Scholar 

  58. Mazo AM, Huang DH, Mozer BA et al. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc Natl Acad Sci USA 1990; 87(6):2112–2116.

    Article  PubMed  CAS  Google Scholar 

  59. Shearn A. The ash-1, ash-2 and trithorax genes of Drosophila melanogaster are functionally related. Genetics 1989; 121(3):517–525.

    PubMed  CAS  Google Scholar 

  60. Beisel C, Imhof A, Greene J et al. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002; 419(6909):857–862.

    Article  PubMed  CAS  Google Scholar 

  61. Rea S, Eisenhaber F, O’Carroll D et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406(6796):593–599.

    Article  PubMed  CAS  Google Scholar 

  62. Tripoulas N, Lajeunesse D, Gildea J et al. The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 1996; 143(2):913–928.

    PubMed  CAS  Google Scholar 

  63. Kanno T, Kanno Y, Siegel RM et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 2004; 13(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  64. Zeng L, Zhou MM. Bromodomain: An acetyl-lysine binding domain. FEBS Lett 2002; 513(1):124–128.

    Article  PubMed  CAS  Google Scholar 

  65. Berezney R, Coffey DS. Identification of a nuclear protein matrix. Biochem Biophys Res Commun 1974; 60(4):1410–1417.

    Article  PubMed  CAS  Google Scholar 

  66. Fey EG, Bangs P, Sparks C et al. The nuclear matrix: Defining structural and functional roles. Crit Rev Eukaryot Gene Expr 1991; 1(2):127–143.

    PubMed  CAS  Google Scholar 

  67. Konety BR, Getzenberg RH. Nuclear structural proteins as biomarkers of cancer. J Cell Biochem 1999; (Suppl)32–33:183–191.

    Article  Google Scholar 

  68. Fu XD, Maniatis T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 1990; 343(6257):437–441.

    Article  PubMed  CAS  Google Scholar 

  69. Fu XD. The superfamily of arginine/serine-rich splicing factors. RNA 1995; 1(7):663–680.

    PubMed  CAS  Google Scholar 

  70. Hedley ML, Amrein H, Maniatis T. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Proc Natl Acad Sci USA 1995; 92(25):11524–11528.

    Article  PubMed  CAS  Google Scholar 

  71. Renz A, Fackelmayer FO. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res 1996; 24(5):843–849.

    Article  PubMed  CAS  Google Scholar 

  72. Romig H, Ruff J, Fackelmayer FO et al. Characterisation of two intronic nuclear-matrix-attachment regions in the human DNA topoisomerase I gene. Eur J Biochem 1994; 221(1):411–419.

    Article  PubMed  CAS  Google Scholar 

  73. Nayler O, Stratling W, Bourquin JP et al. SAF-B protein couples transcription and premRNA splicing to SAR/MAR elements. Nucleic Acids Res 1998; 26(15):3542–3549.

    Article  PubMed  CAS  Google Scholar 

  74. Oesterreich S. Scaffold attachment factors SAFB 1 and SAFB2: Innocent bystanders or critical players in breast tumorigenesis? J Cell Biochem 2003; 90(4):653–661.

    Article  PubMed  CAS  Google Scholar 

  75. Hofmann I, Schnolzer M, Kaufmann I et al. Symplekin, a constitutive protein of karyo-and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell 2002; 13(5):1665–1676.

    Article  PubMed  CAS  Google Scholar 

  76. Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000; 20(5):1515–1525.

    Article  PubMed  CAS  Google Scholar 

  77. Xing H, Mayhew CN, Cullen KE et al. HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 2004; 279(11):10551–10555.

    Article  PubMed  CAS  Google Scholar 

  78. Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000; 19(9):2024–2033.

    Article  PubMed  CAS  Google Scholar 

  79. Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160(3):423–432.

    Article  PubMed  CAS  Google Scholar 

  80. Betanzos A, Huerta M, Lopez-Bayghen E et al. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292(1):51–66.

    Article  PubMed  CAS  Google Scholar 

  81. Wisdom R. AP-1: One switch for many signals. Exp Cell Res 1999; 253(1):180–185.

    Article  PubMed  CAS  Google Scholar 

  82. Croniger C, Leahy P, Reshef L et al. C/EBP and the control of phosphoenolpyruvate carboxykinase gene transcription in the liver. J Biol Chem 1998; 273(48):31629–31632.

    Article  PubMed  CAS  Google Scholar 

  83. Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 1998; 273(46):30057–30060.

    Article  PubMed  CAS  Google Scholar 

  84. Poli V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem 1998; 273(45):29279–29282.

    Article  PubMed  CAS  Google Scholar 

  85. Huang HY, Li R, Sun Q et al. [LIM protein KyoT2 interacts with human tight junction protein ZO-2-i3]. Yi Chuan Xue Bao 2002; 29(11):953–958.

    PubMed  Google Scholar 

  86. Schmeichel KL, Beckerle MC. The LIM domain is a modular protein-binding interface. Cell 1994; 79(2):211–219.

    Article  PubMed  CAS  Google Scholar 

  87. Dawid IB. LIM protein interactions: Drosophila enters the stage. Trends Genet 1998; 14(12):480–482.

    Article  PubMed  CAS  Google Scholar 

  88. Taniguchi Y, Furukawa T, Tun T et al. LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol 1998; 18(1):644–654.

    PubMed  CAS  Google Scholar 

  89. Tun T, Hamaguchi Y, Matsunami N et al. Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 1994; 22(6):965–971.

    Article  PubMed  CAS  Google Scholar 

  90. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science 1999; 284(5415):770–776.

    Article  PubMed  CAS  Google Scholar 

  91. Panin VM, Irvine KD. Modulators of notch signaling. Semin Cell Dev Biol 1998; 9(6):609–617.

    Article  PubMed  CAS  Google Scholar 

  92. Qin H, Wang J, Liang Y et al. Ring1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res 2004; 32(4):1492–1501.

    Article  PubMed  CAS  Google Scholar 

  93. Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2002; 2(1):7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lopez-Bayghen, E., Jaramillo, B.E., Huerta, M., Betanzos, A., Gonzalez-Mariscal, L. (2006). TJ Proteins That Make Round Trips to the Nucleus. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_7

Download citation

Publish with us

Policies and ethics