Skip to main content

Targeting the Poly (ADP-Ribose) Glycohydrolase (PARG) Gene in Mammals

  • Chapter
Poly(ADP-Ribosyl)ation

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 785 Accesses

Abstract

Poly(ADP-ribosyl)ation is a post-translational modification of proteins. Upon DNA damage, poly(ADP-ribose) polymerase-1 catalyzes the transfer of ADP-ribose moieties from NAD+ onto acceptor proteins to form long and branched polymers. Poly(ADP-ribosyl)ation is an extensive but transient modification as polymer chains can reach more than 200 units on protein acceptors and be degraded within a few minutes by poly(ADP-ribose) glycohydrolase. Homeostasis of poly(ADP-ribose) is thought to play an important function in cellular processes. The importance of pADPR synthesis has been established in vitro and in vivo by using chemical inhibitors and genetically engineered mutant mice devoid of the main pADPR synthesizing enzyme, PARP-1. However, the function of PARG in vivo remains elusive. This chapter describes the generation and characterization of PARG knockout mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambon P, Weil JD, Doly J et al. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 1966; 25:638–643.

    Article  CAS  Google Scholar 

  2. Juarez-Salinas H, Sims JL, Jacobson MK. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 1979; 282:740–1.

    Article  PubMed  CAS  Google Scholar 

  3. D’Amours D, Desnoyers S, D’Silva I et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999; 342:249–68 Review.

    Article  PubMed  CAS  Google Scholar 

  4. Wang ZQ, Auer B, Stingl L et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 1995; 9:509–20.

    Article  PubMed  CAS  Google Scholar 

  5. de Murcia JM, Niedergang C, Trucco C et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 1997; 94:7303–7.

    Article  PubMed  Google Scholar 

  6. Masutani M, Suzuki H, Kamada N et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999; 96:2301–4.

    Article  PubMed  CAS  Google Scholar 

  7. Shieh WM, Ame JC, Wilson MV et al. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 1998; 273:30069–72.

    Article  PubMed  CAS  Google Scholar 

  8. Miwa M, Sugimura T. Splitting of the ribose-ribose linkage of poly(adenosine diphosphate-robose) by a calf thymus extract. J Biol Chem 1971; 246:6362–4.

    PubMed  CAS  Google Scholar 

  9. Lin W, Ame JC, Aboul-Ela N et al. Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 1997; 272:11895–901.

    Article  PubMed  CAS  Google Scholar 

  10. Shimokawa T, Masutani M, Nagasawa S et al. Isolation and cloning of rat poly(ADP-ribose) glycohydrolase: Presence of a potential nuclear export signal conserved in mammalian orthologs. J Biochem (Tokyo) 1999; 126:748–755.

    PubMed  CAS  Google Scholar 

  11. Nagasawa S, Shimokawa T, Masutani M et al. Phylogenic distribution of poly(ADP-ribose) glycohydrolase and poly(ADP-ribose)-digesting phosphodiesterase. Proc Japan Acad 2000; 76:41–44.

    Article  Google Scholar 

  12. Panda S, Poirier GG, Kay SA. tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator. Dev Cell 2002; 3:51–61.

    Article  PubMed  CAS  Google Scholar 

  13. Ame JC, Apiou F, Jacobson EL et al. Assignment of the poly(ADP-ribose) glycohydrolase gene (PARG) to human chromosome 10q11.23 and mouse chromosome 14B by in situ hybridization. Cytogenet Cell Genet 1999; 85:269–70.

    Article  PubMed  CAS  Google Scholar 

  14. Donzeau M, Kaldi K, Adam A et al. Tim23 links the inner and outer mitochondrial membranes. Cell 2000; 101:401–12.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer RG, Meyer-Ficca ML, Jacobson EL et al. Human poly(ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23). Gene 2003; 314:181–90.

    Article  PubMed  CAS  Google Scholar 

  16. Di Meglio S, Denegri M, Vallefuoco S et al. Poly(ADPR) polymerase-1 and poly (ADPR) glycohydrolase level and distribution in differentiating rat germinal cells Mol Cell Biochem 2003; 248:85–91.

    Article  PubMed  Google Scholar 

  17. Ohashi S, Kanai M, Hanai S et al. Subcellular localization of poly(ADP-ribose) glycohydrolase in mammalian cells. Biochem Biophys Res Commun 2003; 307:915–21.

    Article  PubMed  CAS  Google Scholar 

  18. Affar EB, Germain M, Winstall E et al. Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem 2001; 276:2935–42.

    Article  PubMed  CAS  Google Scholar 

  19. Bonicalzi ME, Vodenicharov M, Coulombe M et al. Alteration of poly(ADP-ribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases. Biol Cell 2003; 95:635–44.

    Article  PubMed  CAS  Google Scholar 

  20. Davidovic L, Vodenicharov M, Affar EB et al. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001; 268:7–13 Review.

    Article  PubMed  CAS  Google Scholar 

  21. Miwa M, Tanaka M, Matsushima T et al. Purification and properties of glycohydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem 1974; 249:3475–82.

    PubMed  CAS  Google Scholar 

  22. Ikejima M, Gill DM. Poly(ADP-ribose) degradation by glycohydrolase starts with an endonucleolytic incision. J Biol Chem 1988; 263:11037–40.

    PubMed  CAS  Google Scholar 

  23. Alvarez-Gonzalez R, Althaus FR. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 1989; 218:67–74.

    PubMed  CAS  Google Scholar 

  24. Ying W, Swanson RA. The poly(ADP-ribose) glycohydrolase inhibitor gallotannin blocks oxidative astrocyte death. Neuroreport 2000; 11:1385–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lu XC, Massuda E, Lin Q et al. Post-treatment with a novel PARG inhibitor reduces infarct in cerebral ischemia in the rat. Brain Res 2003; 978:99–103.

    Article  PubMed  CAS  Google Scholar 

  26. Hanai S, Kanai M, Ohashi S et al. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci USA 2004; 101:82–6.

    Article  PubMed  CAS  Google Scholar 

  27. Brochu G, Shah GM, Poirier GG. Purification of poly(ADP-ribose) glycohydrolase and detection of its isoforms by a zymogram following one-or two-dimensional electrophoresis. Anal Biochem-1994; 218:265–72.

    Article  PubMed  CAS  Google Scholar 

  28. Tong WM, Galendo D, Wang ZQ. Role of DNA break-sensing molecule poly(ADP-ribose) polymerase (PARP) in cellular function and radiation toxicity. Cold Spring Harb Symp Quant Biol 2000; 65:583–91.

    Article  PubMed  CAS  Google Scholar 

  29. d’Adda di Fagagna F, Hande MP, Tong WM et al. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 1999; 23:76–80.

    Google Scholar 

  30. Tong WM, Hande MP, Lansdorp PM et al. DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol 2001; 21:4046–54.

    Article  PubMed  CAS  Google Scholar 

  31. Grube K, Burkle A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 1992; 89:11759–63.

    Article  PubMed  CAS  Google Scholar 

  32. Muiras ML, Muller M, Schachter F et al. Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians. J Mol Med 1998; 76:346–54.

    Article  PubMed  CAS  Google Scholar 

  33. Ly DH, Lockhart DJ, Lerner RA et al. Mitotic misregulation and human aging. Science 2000; 287:2486–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Cortes, U., Wang, ZQ. (2006). Targeting the Poly (ADP-Ribose) Glycohydrolase (PARG) Gene in Mammals. In: Poly(ADP-Ribosyl)ation. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36005-0_3

Download citation

Publish with us

Policies and ethics