Skip to main content

Role of Poly-ADP-Ribosylation in Cancer Development

  • Chapter
Poly(ADP-Ribosyl)ation

Abstract

Elucidation of the relationship between poly-ADP-ribosylation and carcinogenesis has markedly progressed by the recent development of knockout or transgenic mice models of poly(ADP-ribose) polymerase (Parp)-1, Parp-2, and poly(ADP-ribose) glycohydrolase (Parg). Parp-1 is involved in base excision repair (BER), single- and |double-strand break repair, and chromosomal stability. These multiple functions explain why Parp-1 deficiency enhances carcinogenesis induced by alkylating agents and that in aged animals. Parp-1 is also involved in transcriptional regulation through protein-protein interaction as a coactivator and/or poly-ADP-ribosylation reaction and is possibly involved in epigenetic alteration during carcinogenesis and modulation of tumor phenotypes. Parp-1-dependent cell-death accompanying NAD depletion may be another important issue in carcinogenesis because this process could lead to the selection of Parp-1 deficient cells due to their survival advantage during cancer growth. The relationship of Parp-2, Parp-3, tankyrase and Parg with carcinogenesis is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954; 8(1):1–12.

    PubMed  CAS  Google Scholar 

  2. Sugimura T. Multistep carcinogenesis: A 1992 perspective. Science 1992; 258(5082):603–607.

    Article  PubMed  CAS  Google Scholar 

  3. Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 2003; 38(4):339–348.

    Article  PubMed  CAS  Google Scholar 

  4. Masutani M, Suzuki H, Kamada N et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999; 96(5):2301–2304.

    Article  PubMed  CAS  Google Scholar 

  5. Wang ZQ, Auer B, Stingl L et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 1995; 9(5):509–520.

    Article  PubMed  CAS  Google Scholar 

  6. de Murcia JM, Niedergang C, Trucco C et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 1997; 94(14):7303–7307.

    Article  PubMed  Google Scholar 

  7. Tong WM, Cortes U, Hande MP et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 2002; 62(23):6990–6996.

    PubMed  CAS  Google Scholar 

  8. Tsutsumi M, Masutani M, Nozaki T et al. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 2001; 22(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  9. Nozaki T, Fujihara H, Watanabe M et al. Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 2003; 94(6):497–500.

    Article  PubMed  CAS  Google Scholar 

  10. Ide F, Oda H, Nakatsuru Y et al. Xeroderma pigmentosum group A gene action as a protection factor against 4-nitroquinoline 1-oxide-induced tongue carcinogenesis. Carcinogenesis 2001; 22(4):567–572.

    Article  PubMed  CAS  Google Scholar 

  11. Morrison C, Smith GC, Stingl L et al. Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat Genet 1997; 17(4):479–482.

    Article  PubMed  CAS  Google Scholar 

  12. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366):215–221.

    Article  PubMed  CAS  Google Scholar 

  13. Tong WM, Hande MP, Lansdorp PM et al. DNA strand break-sensing molecule poly(ADP-ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol 2001; 21(12):4046–4054.

    Article  PubMed  CAS  Google Scholar 

  14. Beneke R, Moroy T. Inhibition of poly(ADP-ribose) polymerase activity accelerates T-cell lymphomagenesis in p53 deficient mice. Oncogene 2001; 20(56):8136–8141.

    Article  PubMed  CAS  Google Scholar 

  15. Tong WM, Ohgaki H, Huang H et al. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) Mice. Am J Pathol 2003; 162(1):343–352.

    PubMed  CAS  Google Scholar 

  16. Lee Y, McKinnon PJ. DNA ligase IV suppresses medulloblastoma formation. Cancer Res 2002; 62(22):6395–6399.

    PubMed  CAS  Google Scholar 

  17. Conde C, Mark M, Oliver FJ et al. Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J 2001; 20(13):3535–3543.

    Article  PubMed  CAS  Google Scholar 

  18. Kim PK, Zamora R, Petrosko P et al. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 2001; 1(8):1421–1441.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe F, Masutani M, Kamada N et al. Impairment in S-phase entry of splenocytes of Parp-1 knockout mice. Proc Japan Acad 2003; 79 Ser B(8):248–251.

    Article  CAS  Google Scholar 

  20. Schreiber V, Ame JC, Dolle P et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 2002; 277(25):23028–23036.

    Article  PubMed  CAS  Google Scholar 

  21. Augustin A, Spenlehauer C, Dumond H et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 2003; 116(Pt 8):1551–1562.

    Article  PubMed  CAS  Google Scholar 

  22. Smith S, Giriat I, Schmitt A et al. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998; 282(5393):1484–1487.

    Article  PubMed  CAS  Google Scholar 

  23. Gunji A, Fujihara H, Kamada N et al. Lack of altered frequency of sister-chromatid exchanges in poly(ADP-ribose) glycohydrolase-deficient mouse ES cells treated with methylmethanesulfonate. Proc Japan Acad 2003; 79 Ser B(10):305–307.

    Article  CAS  Google Scholar 

  24. Hanai S, Kanai M, Ohashi S et al. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci USA 2004; 101(1):82–86.

    Article  PubMed  CAS  Google Scholar 

  25. Yamagami T, Miwa A, Takasawa S et al. Induction of rat pancreatic B-cell tumors by the combined administration of streptozotocin or alloxan and poly(adenosine diphosphate ribose) synthetase inhibitors. Cancer Res 1985; 45(4):1845–1849.

    PubMed  CAS  Google Scholar 

  26. Takahashi S, Ohnishi T, Denda A et al. Enhancing effect of 3-aminobenzamide on induction of gamma-glutamyl transpeptidase positive foci in rat liver. Chem Biol Interact 1982; 39(3):363–368.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg MR, Novicki DL, Jirtle RL et al. Promoting effect of nicotinamide on the development of renal tubular cell tumors in rats initiated with diethylnitrosamine. Cancer Res 1985; 45(2):809–814.

    PubMed  CAS  Google Scholar 

  28. Miwa M, Ishikawa T, Kondo T et al. Enhancement by 3-aminobenzamide of methylazoxymethanol acetate-induced hepatoma of the small fish “Medaka” (Oryzias latipes)”. In: Althaus FR, Hilz H, Shall S, eds. ADP-Ribosylation of Proteins. Berlin-Heidelberg-New York-Tokyo: Springer-Verag, 1985:480–483.

    Google Scholar 

  29. Miller EG, Rivera-Hidalgo F, Binnie WH. 3-Methoxybenzamide, a possible initiator for DMBA-induced carcinogenesis. In: Jacobson MK, Jacobson EL, eds. ADP-Ribose Transfer Reactions. Mechanisms and Biological Significance. New York: Springer-Verlag, 1989:287–290.

    Google Scholar 

  30. Rakieten N, Gordon BS, Beaty A et al. Pancreatic islet cell tumors produced by the combined action of streptozotocin and nicotinamide. Proc Soc Exp Biol Med 1971; 137(1):280–283.

    PubMed  CAS  Google Scholar 

  31. Tsujiuchi T, Tsutsumi M, Denda A et al. Possible involvement of poly ADP-ribosylation in phenobarbital promotion of rat hepatocarcinogenesis. Carcinogenesis 1990; 11(10):1783–1787.

    Article  PubMed  CAS  Google Scholar 

  32. Nakagawa K, Utsunomiya J, Ishikawa T. Inhibition of methylazoxymethanol acetate initiation of colon carcinogenesis in rats by treatment with the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide. Carcinogenesis 1988; 9(7):1167–1171.

    Article  PubMed  CAS  Google Scholar 

  33. Denda A, Tsutsumi M, Yokose Y et al. Effects of 3-aminobenzamide on the induction of gamma-glutamyl-transpeptidase-positive foci by various chemicals in rat liver. Cancer Lett 1988; 39(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  34. Boyonoski AC, Spronck JC, Gallacher LM et al. Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats. J Nutr 2002; 132(1):108–114.

    PubMed  CAS  Google Scholar 

  35. Boyonoski AC, Spronck JC, Jacobs RM et al. Pharmacological intakes of niacin increase bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats. J Nutr 2002; 132(1):115–120.

    PubMed  CAS  Google Scholar 

  36. Kun E, Kirsten E, Milo GE et al. Cell cycle-dependent intervention by benzamide of carcinogen-induced neoplastic transformation and in vitro poly(ADP-ribosyl)ation of nuclear proteins in human fibroblasts. Proc Natl Acad Sci USA 1983; 80(23):7219–7223.

    Article  PubMed  CAS  Google Scholar 

  37. Borek C, Ong A, Morgan WF et al. Inhibition of X-ray-and ultraviolet light-induced transformation in vitro by modifiers of poly(ADP-ribose) synthesis. Radiat Res 1984; 99(2):219–227.

    Article  PubMed  CAS  Google Scholar 

  38. Borek C, Cleaver JE. Antagonistic action of a tumor promoter and a poly(adenosine diphosphoribose) synthesis inhibitor in radiation-induced transformation in vitro. Biochem Biophys Res Commun 1986; 134(3):1334–1341.

    Article  PubMed  CAS  Google Scholar 

  39. Borek C, Morgan WF, Ong A et al. Inhibition of malignant transformation in vitro by inhibitors of poly(ADP-ribose) synthesis. Proc Natl Acad Sci USA 1984; 81(1):243–247.

    Article  PubMed  CAS  Google Scholar 

  40. Lubet RA, McCarvill JT, Putman DL et al. Effect of 3-aminobenzamide on the induction of toxicity and transformation by ethyl methanesulfonate and methylcholanthrene in BALB/3T3 cells. Carcinogenesis 1984; 5(4):459–462.

    Article  PubMed  CAS  Google Scholar 

  41. Lubet RA, McCarvill JT, Schwartz JL et al. Effects of 3-aminobenzamide on the induction of morphologic transformation by diverse compounds in Balb/3T3 cells in vitro. Carcinogenesis 1986; 7(1):71–75.

    Article  PubMed  CAS  Google Scholar 

  42. Borek C, Ong A, Cleaver JE. Methylating and ethylating carcinogens have different requirements for poly(ADP-ribose) synthesis during malignant transformation. Carcinogenesis 1984; 5(12):1573–1576.

    Article  PubMed  CAS  Google Scholar 

  43. Strain AJ. Inhibitors of ADP-ribosyl transferase enhance the transformation of NIH3T3 cells following transfection with SV40 DNA. Exp Cell Res 1985; 159(2):531–535.

    Article  PubMed  CAS  Google Scholar 

  44. Ohashi Y, Ueda K, Hayaishi O et al. Induction of murine teratocarcinoma cell differentiation by suppression of poly(ADP-ribose) synthesis. Proc Natl Acad Sci USA 1984; 81(22):7132–7136.

    Article  PubMed  CAS  Google Scholar 

  45. Terada M, Fujiki H, Marks PA et al. Induction of erythroid differentiation of murine erythroleukemia cells by nicotinamide and related compounds. Proc Natl Acad Sci USA 1979; 76(12):6411–6414.

    Article  PubMed  CAS  Google Scholar 

  46. Brac T, Ebisuzaki K. Inhibitors of poly(ADP-ribose) polymerase prevent Friend cell differentiation. In: Althaus FR, Hilz H, Shall S, eds. ADP-Ribosylation of Proteins. Berlin-Heidelberg-New York-Tokyo: Springer, 1985:446–452.

    Google Scholar 

  47. Nakayasu M, Shima H, Aonuma S et al. Deletion of transfected oncogenes from NIH 3T3 transformants by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 1988; 85(23):9066–9070.

    Article  PubMed  CAS  Google Scholar 

  48. Shima H, Nakayasu M, Aonuma S et al. Loss of the MYC gene amplified in human HL-60 cells after treatment with inhibitors of poly(ADP-ribose) polymerase or with dimethyl sulfoxide. Proc Natl Acad Sci USA 1989; 86(19):7442–7445.

    Article  PubMed  CAS  Google Scholar 

  49. Bauer PI, Kirsten E, Varadi G et al. Reversion of malignant phenotype by 5-iodo-6-amino-1,2-benzopyrone a noncovalently binding ligand of poly(ADP-ribose) polymerase. Biochimie 1995; 77(5):374–377.

    Article  PubMed  CAS  Google Scholar 

  50. Nozaki T, Masutani M, Watanabe M et al. Syncytiotrophoblastic giant cells in teratocarcinoma-like tumors derived from Parp-disrupted mouse embryonic stem cells. Proc Natl Acad Sci USA 1999; 96(23):13345–13350.

    Article  PubMed  CAS  Google Scholar 

  51. Hemberger M, Nozaki T, Winterhager E et al. Parp1-deficiency induces differentiation of ES cells into trophoblast derivatives. Dev Biol 2003; 257(2):371–381.

    Article  PubMed  CAS  Google Scholar 

  52. Hans MA, Muller M, Meyer-Ficca M et al. Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: Evidence for increased tumor cell apoptosis in vivo. Oncogene 1999; 18(50):7010–7015.

    Article  PubMed  CAS  Google Scholar 

  53. Caldecott KW. Protein-protein interactions during mammalian DNA single-strand break repair. Biochem Soc Trans 2003; 31 (Pt 1):247–251.

    Article  PubMed  CAS  Google Scholar 

  54. Divine KK, Gilliland FD, Crowell RE et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res 2001; 461(4):273–278.

    PubMed  CAS  Google Scholar 

  55. El-Khamisy SF, Masutani M, Suzuki H et al. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 2003; 31(19):5526–5533.

    Article  PubMed  CAS  Google Scholar 

  56. Dantzer F, Schreiber V, Niedergang C et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 1999; 81(1–2):69–75.

    Article  PubMed  CAS  Google Scholar 

  57. von Kobbe C, Harrigan JA, May A et al. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 2003; 23(23):8601–8613.

    Article  CAS  Google Scholar 

  58. Opresko PL, Cheng WH, von Kobbe C et al. Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 2003; 24(5):791–802.

    Article  PubMed  CAS  Google Scholar 

  59. Malagna M, Althaus FR. Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J Biol Chem 2004; 279(7):5244–5248.

    Google Scholar 

  60. Ruscetti T, Lehnert BE, Halbrook J et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 1998; 273(23):14461–14467.

    Article  PubMed  CAS  Google Scholar 

  61. Ariumi Y, Masutani M, Copeland TD et al. Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 1999; 18(32):4616–4625.

    Article  PubMed  CAS  Google Scholar 

  62. Brown ML, Franco D, Burkle A et al. Role of poly(ADP-ribosyl)ation in DNA-PKcs-independent V(D)J recombination. Proc Natl Acad Sci USA 2002; 99(7):4532–4537.

    Article  PubMed  CAS  Google Scholar 

  63. Adelfalk C, Kontou M, Hirsch-Kauffmann M et al. Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase. FEBS Lett 2003; 554(1–2):55–58.

    Article  PubMed  CAS  Google Scholar 

  64. Li B, Nacarro S, Kasahara N et al. Identification and biochemical characterization of a Werner syndrome protein complex with Ku70/80 and PARP-1. J Biol Chem 2004; 279(14):13659–13667.

    Article  PubMed  CAS  Google Scholar 

  65. Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS et al. Chromosomal aberrations in PARP(-/-) mice: Genome stabilization in immortalized cells by reintroduction of poly(ADP-ribose) polymerase cDNA. Proc Natl Acad Sci USA 1999; 96(23):13191–13196.

    Article  PubMed  CAS  Google Scholar 

  66. Nozaki T, Fujihara H, Kamada N et al. Hyperploidy of embryonic fibroblasts derived from Parp-1 knockout mouse. Proc Japan Acad 2001; 77Ser B(6):121–124.

    Google Scholar 

  67. Simbulan-Rosenthal CM, Rosenthal DS, Luo R et al. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res 2001; 29(3):841–849.

    Article  PubMed  CAS  Google Scholar 

  68. Wang ZQ, Stingl L, Morrison C et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 1997; 11(18):2347–2358.

    PubMed  CAS  Google Scholar 

  69. Vaziri H, West MD, Allsopp RC et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 1997; 16(19):6018–6033.

    Article  PubMed  CAS  Google Scholar 

  70. Nozaki T, Masutani M, Akagawa T et al. Suppression of G1 arrest and enhancement of G2 arrest by inhibitors of poly(ADP-ribose) polymerase: Possible involvement of poly(ADP-ribosyl)ation in cell cycle arrest following gamma-irradiation. Jpn J Cancer Res 1994; 85(11):1094–1098.

    PubMed  CAS  Google Scholar 

  71. Wieler S, Gagne JP, Vaziri H et al. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 2003; 278(21):18914–18921.

    Article  PubMed  CAS  Google Scholar 

  72. Agarwal ML, Agarwal A, Taylor WR et al. Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene 1997; 15(9):1035–1041.

    Article  PubMed  CAS  Google Scholar 

  73. Frouin I, Maga G, Denegri M et al. Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners. J Biol Chem 2003; 278(41):39265–39268.

    Article  PubMed  CAS  Google Scholar 

  74. Kanai M, Tong WM, Sugihara E et al. Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl)ation in regulation of centrosome function. Mol Cell Biol 2003; 23(7):2451–2462.

    Article  PubMed  CAS  Google Scholar 

  75. Halappanavar SS, Shah GM. Defective control of mitotic and post-mitotic checkpoints in poly(ADP-ribose) polymerase-1(-/-)fibroblasts after mitotic spindle disruption. Cell cycle 2004; 3(3):335–342.

    PubMed  CAS  Google Scholar 

  76. Sugimura T, Ushijima T. Genetic and epigenetic alterations in carcinogenesis. Mutat Res 2000; 462(2–3):235–246.

    PubMed  CAS  Google Scholar 

  77. Gaudet F, Hodgson JG, Eden A et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300(5618):489–492.

    Article  PubMed  CAS  Google Scholar 

  78. Zardo G, D’Erme M, Reale A et al. Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern? Biochemistry 1997; 36(26):7937–7943.

    Article  PubMed  CAS  Google Scholar 

  79. de Capoa A, Febbo FR, Giovannelli F et al. Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysis. FASEB J 1999; 13(1):89–93.

    PubMed  Google Scholar 

  80. Tulin A, Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 2003; 299(5606):560–562.

    Article  PubMed  CAS  Google Scholar 

  81. Simbulan-Rosenthal CM, Ly DH, Rosenthal DS et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 2000; 97(21):11274–11279.

    Article  PubMed  CAS  Google Scholar 

  82. Hassa PO, Hottiger MO. A role of poly(ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol Chem 1999; 380(7–8):953–959.

    Article  PubMed  CAS  Google Scholar 

  83. Ota K, Kameoka M, Tanaka Y et al. Expression of histone acetyltransferases was down-regulated in poly(ADP-ribose) polymerase-1-deficient murine cells. Biochem Biophys Res Commun 2003; 310(2):312–317.

    Article  PubMed  CAS  Google Scholar 

  84. Graeber TG, Osmanian C, Jacks T et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379(6560):88–91.

    Article  PubMed  CAS  Google Scholar 

  85. Yu SW, Wang H, Poitras MF et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297(5579):259–263.

    Article  PubMed  CAS  Google Scholar 

  86. Eliasson MJ, Sampei K, Mandir AS et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 1997; 3(10):1089–1095.

    Article  PubMed  CAS  Google Scholar 

  87. Burkart V, Wang ZQ, Radons J et al. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozotocin. Nat Med 1999; 5(3):314–319.

    Article  PubMed  CAS  Google Scholar 

  88. Pieper AA, Brat DJ, Krug DK et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999; 96(6):3059–3064.

    Article  PubMed  CAS  Google Scholar 

  89. Bhatia KG, Cherney BW, Huppi K et al. A deletion linked to a poly(ADP-ribose) polymerase gene on chromosome 13q33-qter occurs frequently in the normal black population as well as in multiple tumor DNA. Cancer Res 1990; 50(17):5406–5413.

    PubMed  CAS  Google Scholar 

  90. Bhatia K, Huppi K, Cherney B et al. Relative predispositional effect of a PADPRP marker allele in B-cell and some non B-cell malignancies. Curr Top Microbiol Immunol 1990; 166:347–357.

    PubMed  CAS  Google Scholar 

  91. Lyn D, Cherney BW, Lalande M et al. A duplicated region is responsible for the poly(ADP-ribose) polymerase polymorphism, on chromosome 13, associated with a predisposition to cancer. Am J Hum Genet 1993; 52(1):124–134.

    PubMed  CAS  Google Scholar 

  92. Prasad SC, Thraves PJ, Bhatia KG et al. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing’s sarcoma cells. Cancer Res 1990; 50(1):38–43.

    PubMed  CAS  Google Scholar 

  93. Soldatenkov VA, Albor A, Patel BK et al. Regulation of the human poly(ADP-ribose) polymerase promoter by the ETS transcription factor. Oncogene 1999; 18(27):3954–3962.

    Article  PubMed  CAS  Google Scholar 

  94. Bieche I, de Murcia G, Lidereau R. Poly(ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin Cancer Res 1996; 2(7):1163–1167.

    PubMed  CAS  Google Scholar 

  95. Rajaee-Behbahani N, Schmezer P, Ramroth H et al. Reduced poly(ADP-ribosyl)ation in lymphocytes of laryngeal cancer patients: Results of a case-control study. Int J Cancer 2002; 98(5):780–784.

    Article  PubMed  CAS  Google Scholar 

  96. Masutani M, Nozaki T, Sasaki H et al. Aberration of poly(ADP-ribose) polymerase-1 gene in human tumor cell lines: Its expression and structural alterations. Proc Japan Acad 2004; 80Ser B(2):114–118.

    Article  CAS  Google Scholar 

  97. Moolgavkar SH, Luebeck EG. Multistage carcinogenesis and the incidence of human cancer. Genes Chromosomes Cancer 2003; 38(4):302–306.

    Article  PubMed  CAS  Google Scholar 

  98. Bassing CH, Suh H, Ferguson DO et al. Histone H2AX: A dosage-dependent suppressor of oncogenic translocations and tumors. Cell 2003; 114(3):359–370.

    Article  PubMed  CAS  Google Scholar 

  99. Celeste A, Difilippantonio S, Difilippantonio MJ et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114(3):371–383.

    Article  PubMed  CAS  Google Scholar 

  100. Dumon-Jones V, Frappart PO, Tong WM et al. Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res 2003; 63(21):7263–7269.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Masutani, M. et al. (2006). Role of Poly-ADP-Ribosylation in Cancer Development. In: Poly(ADP-Ribosyl)ation. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36005-0_17

Download citation

Publish with us

Policies and ethics