Skip to main content

PARP-1 and the Shape of Cell Death

  • Chapter
Poly(ADP-Ribosyl)ation

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The following review discusses the mechanisms through which cell death may be regulated by poly(ADP-ribose) polymerase-1(PARP-1), a nuclear enzyme that catalyzes the synthesis of long, branching (ADP-ribose)n polymers from NAD+. Cell death may be caused by nongenotoxic or genotoxic stimuli. Whereas the former mainly occurs in the form of apoptosis, genotoxic exposure can cause both apoptotic and necrotic cell death, depending on the intensity of DNA damage. Although PARP-1 has been shown to play a role in some models of apoptosis triggered by nongenotoxic stimuli, most studies have found PARP-1 to be dispensable for this form of cell death. However, in many models of necrosis caused by genotoxic damage, PARP-1 appears to be a key player causing necrotic cell death by depleting NAD+ (the substrate of PARP) and ATP (used in futile attempt to resynthesize NAD+). The author and his colleagues were among the first to show that upon reaching a genotoxic threshold, PARP-1 ovaractivation switches the “default” apoptotic death to necrosis, likely via cellular energetic depletion. PARP activation has also been shown by us, and later by others, to trigger mitochondrial alterations such as mitochondrial membrane depolarization and secondary superoxide production during necrosis or AIF-mediated, caspase-independent apoptosis. It appears that a finely tuned network involving multilevel mitochondrial-nuclear cross talk between PARP-1, p53, the mitochondrial electron transport chain, energy carriers, as well as nuclear and mitochondrial death mediators regulates genotoxic stress-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeiss CJ. The apoptosis-necrosis continuum: Insights from genetically altered mice. Vet Pathol 2003; 40(5):481–495.

    Article  PubMed  CAS  Google Scholar 

  2. Burkle A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 2001; 23(9):795–806.

    Article  PubMed  CAS  Google Scholar 

  3. Berger NA, Sims JL, Catino DM et al. Poly(ADP-ribose) polymerase mediates the suicide response to massive DNA damage: Studies in normal and DNA-repair defective cells. Princess Takamatsu Symp 1983; 13:219–226.

    PubMed  CAS  Google Scholar 

  4. Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 1985; 101(1):4–15.

    Article  PubMed  CAS  Google Scholar 

  5. Kaufmann SH, Desnoyers S, Ottaviano Y et al. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53(17):3976–3985.

    PubMed  CAS  Google Scholar 

  6. Lazebnik YA, Kaufmann SH, Desnoyers S et al. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371(6495):346–347.

    Article  PubMed  CAS  Google Scholar 

  7. Simbulan-Rosenthal CM, Rosenthal DS, Iyer S et al. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 1998; 273(22):13703–13712.

    Article  PubMed  CAS  Google Scholar 

  8. Donzelli M, Negri C, Mandarino A et al. Poly(ADP-ribose) synthesis: A useful parameter for identifying apoptotic cells. Histochem J 1997; 29(11–12):831–837.

    Article  PubMed  CAS  Google Scholar 

  9. Chang H, Sander CS, Muller CS et al. Detection of poly(ADP-ribose) by immunocytochemistry: A sensitive new method for the early identification of UVB-and H2O2-induced apoptosis in keratinocytes. Biol Chem 2002; 383(3–4):703–708.

    Article  PubMed  CAS  Google Scholar 

  10. Sumimoto S, Ishigami T, Horiguchi Y et al. Anti-Fas antibody induces different types of cell death in the human histiocytic cell line, U937, and the human B cell line, B104: The role of single-strand DNA breaks and poly (ADP-ribosyl)ation in cell death. Cell Immunol 1994; 153(1):184–193.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenthal DS, Ding R, Simbulan-Rosenthal CM et al. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 1997; 232(2):313–321.

    Article  PubMed  CAS  Google Scholar 

  12. Simbulan-Rosenthal CM, Rosenthal DS, Luo R et al. Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res 1999; 59(9):2190–2194.

    PubMed  CAS  Google Scholar 

  13. Smulson ME, Simbulan-Rosenthal CM, Boulares AH et al. Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. Adv Enzyme Regul 2000; 40:183–215.

    Article  PubMed  CAS  Google Scholar 

  14. Shiokawa D, Maruta H, Tanuma S. Inhibitors of poly(ADP-ribose) polymerase suppress nuclear fragmentation and apoptotic-body formation during apoptosis in HL-60 cells. FEBS Lett 1997; 413(1):99–103.

    Article  PubMed  CAS  Google Scholar 

  15. Leist M, Single B, Kunstle G et al. Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem Biophys Res Commun 1997; 233(2):518–522.

    Article  PubMed  CAS  Google Scholar 

  16. Virag L, Scott GS, Cuzzocrea S et al. Peroxynitrite-induced thymocyte apoptosis: The role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology 1998; 94(3):345–355.

    Article  PubMed  CAS  Google Scholar 

  17. Wang ZQ, Stingl L, Morrison C et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 1997; 11(18):2347–2358.

    PubMed  CAS  Google Scholar 

  18. Yu SW, Wang H, Poitras MF et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297(5579):259–263.

    Article  PubMed  CAS  Google Scholar 

  19. Leist M, Single B, Castoldi AF et al. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185(8):1481–1486.

    Article  PubMed  CAS  Google Scholar 

  20. Coppola S, Nosseri C, Maresca V et al. Different basal NAD levels determine opposite effects of poly(ADP-ribosyl)polymerase inhibitors on H2O2-induced apoptosis. Exp Cell Res 1995; 221(2):462–469.

    Article  PubMed  CAS  Google Scholar 

  21. Virag L, Salzman AL, Szabo C. Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol 1998; 161(7):3753–3759.

    PubMed  CAS  Google Scholar 

  22. Kuo ML, Chau YP, Wang JH et al. Inhibitors of poly(ADP-ribose) polymerase block nitric oxide-induced apoptosis but not differentiation in human leukemia HL-60 cells. Biochem Biophys Res Commun 1996; 219(2):502–508.

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka Y, Yoshihara K, Tohno Y et al. Inhibition and down-regulation of poly(ADP-ribose) polymerase results in a marked resistance of HL-60 cells to various apoptosis-inducers. Cell Mol Biol (Noisy-le-grand) 1995; 41(6):771–781.

    CAS  Google Scholar 

  24. Schreiber V, Hunting D, Trucco C et al. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci USA 1995; 92(11):4753–4757.

    Article  PubMed  CAS  Google Scholar 

  25. Guo TL, Miller MA, Datar S et al. Inhibition of poly(ADP-ribose) polymerase rescues human T lymphocytes from methylmercury-induced apoptosis. Toxicol Appl Pharmacol 1998; 152(2):397–405.

    Article  PubMed  CAS  Google Scholar 

  26. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001; 29 (Pt 6):684–688.

    Article  PubMed  CAS  Google Scholar 

  27. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22(56):9030–9040.

    Article  PubMed  CAS  Google Scholar 

  28. Malanga M, Pleschke JM, Kleczkowska HE et al. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 1998; 273(19):11839–11843.

    Article  PubMed  CAS  Google Scholar 

  29. Pleschke JM, Kleczkowska HE, Strohm M et al. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 2000; 275(52):40974–40980.

    Article  PubMed  CAS  Google Scholar 

  30. Mendoza-Alvarez H, Alvarez-Gonzalez R. Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 2001; 276(39):36425–36430.

    Article  PubMed  CAS  Google Scholar 

  31. Simbulan-Rosenthal CM, Rosenthal DS, Luo RB et al. Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 2001; 3(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  32. Beneke R, Geisen C, Zevnik B et al. DNA excision repair and DNA damage-induced apoptosis are linked to Poly(ADP-ribosyl)ation but have different requirements for p53. Mol Cell Biol 2000; 20(18):6695–703.

    Article  PubMed  CAS  Google Scholar 

  33. Simbulan-Rosenthal CM, Rosenthal DS, Ding R et al. Prolongation of the p53 response to DNA strand breaks in cells depleted of PARP by antisense RNA expression. Biochem Biophys Res Commun 1998; 253(3):864–868.

    Article  PubMed  CAS  Google Scholar 

  34. Lovborg H, Wojciechowski J, Larsson R et al. Action of a novel anticancer agent, CHS 828, on mouse fibroblasts: Increased sensitivity of cells lacking poly (ADP-Ribose) polymerase-1. Cancer Res 2002; 62(15):4206–4211.

    PubMed  CAS  Google Scholar 

  35. Mandir AS, Simbulan-Rosenthal CM, Poitras MF et al. A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 2002; 83(1):186–192.

    Article  PubMed  CAS  Google Scholar 

  36. Whitacre CM, Hashimoto H, Tsai ML et al. Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res 1995; 55(17):3697–3701.

    PubMed  CAS  Google Scholar 

  37. Villunger A, Michalak EM, Coultas L et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302(5647):1036–1038.

    Article  PubMed  CAS  Google Scholar 

  38. Ihrie RA, Attardi LD. Perp-etrating p53-dependent apoptosis. Cell Cycle 2004; 3(3).

    Google Scholar 

  39. Ihrie RA, Reczek E, Horner JS et al. Perp is a mediator of p53-dependent apoptosis in diverse cell types. Curr Biol 2003; 13(22):1985–1990.

    Article  PubMed  CAS  Google Scholar 

  40. Attardi LD, Reczek EE, Cosmas C et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 2000; 14(6):704–718.

    PubMed  CAS  Google Scholar 

  41. Mihara M, Moll UM. Detection of mitochondrial localization of p53. Methods Mol Biol 2003; 234:203–209.

    PubMed  CAS  Google Scholar 

  42. Mihara M, Erster S, Zaika A et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11(3):577–590.

    Article  PubMed  CAS  Google Scholar 

  43. Sansome C, Zaika A, Marchenko ND et al. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 2001; 488(3):110–115.

    Article  PubMed  CAS  Google Scholar 

  44. Konishi A, Shimizu S, Hirota J et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 2003; 114(6):673–688.

    Article  PubMed  CAS  Google Scholar 

  45. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 1996; 271(5 Pt 1):C1424–C1437.

    PubMed  CAS  Google Scholar 

  46. Guidarelli A, Tommasini I, Fiorani M et al. Essential role of the mitochondrial respiratory chain in peroxynitrite-induced strand scission of genomic DNA. IUBMB Life 2000; 50(3):195–201.

    Article  PubMed  CAS  Google Scholar 

  47. Guidarelli A, Fiorani M, Cantoni O. Calcium-dependent mitochondrial formation of species promoting strand scission of genomic DNA in U937 cells exposed to tert-butylhydroperoxide: The role of arachidonic acid. Free Radic Res 2000; 33(5):477–487.

    Article  PubMed  CAS  Google Scholar 

  48. Virag L, Scott GS, Antal-Szalmas P et al. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol Pharmacol 1999; 56(4):824–833.

    PubMed  CAS  Google Scholar 

  49. Homburg S, Visochek L, Moran N et al. A fast signal-induced activation of Poly(ADP-ribose) polymerase: A novel downstream target of phospholipase c. J Cell Biol 2000; 150(2):293–307.

    Article  PubMed  CAS  Google Scholar 

  50. Palomba L, Sestili P, Cattabeni F et al. Prevention of necrosis and activation of apoptosis in oxidatively injured human myeloid leukemia U937 cells. FEBS Lett 1996; 390(1):91–94.

    Article  PubMed  CAS  Google Scholar 

  51. Meier HL, Millard CB. Alterations in human lymphocyte DNA caused by sulfur mustard can be mitigated by selective inhibitors of poly(ADP-ribose) polymerase. Biochim Biophys Acta 1998; 1404(3):367–376.

    Article  PubMed  CAS  Google Scholar 

  52. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999; 96(24):13978–13982.

    Article  PubMed  CAS  Google Scholar 

  53. Palomba L, Sestili P, Columbaro M et al. Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: The effect of the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide. Biochem Pharmacol 1999; 58(11):1743–1750.

    Article  PubMed  CAS  Google Scholar 

  54. Filipovic DM, Meng X, Reeves WB. Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 1999; 277(3 Pt 2):F428–F436.

    PubMed  CAS  Google Scholar 

  55. Kim JW, Won J, Sohn S et al. DNA-binding activity of the N-terminal cleavage product of poly(ADP-ribose) polymerase is required for UV mediated apoptosis. J Cell Sci 2000; 113 (Pt 6):955–961.

    PubMed  CAS  Google Scholar 

  56. Lee YJ, Shacter E. Hydrogen peroxide inhibits activation, not activity, of cellular caspase-3 in vivo. Free Radic Biol Med 2000; 29(7):684–692.

    Article  PubMed  CAS  Google Scholar 

  57. Tronov VA, Konstantinov EM. Hydrogen peroxide-induced DNA repair and death of resting human blood lymphocytes. Biochemistry (Mosc) 2000; 65(11):1279–1286.

    PubMed  CAS  Google Scholar 

  58. Tentori L, Balduzzi A, Portarena I et al. Poly (ADP-ribose) polymerase inhibitor increases apoptosis and reduces necrosis induced by a DNA minor groove binding methyl sulfonate ester. Cell Death Differ 2001; 8(8):817–828.

    Article  PubMed  CAS  Google Scholar 

  59. Rosenthal DS, Simbulan-Rosenthal CM, Liu WF et al. PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol 2001; 117(6):1566–1573.

    Article  PubMed  CAS  Google Scholar 

  60. Los M, Mozoluk M, Ferrari D et al. Activation and caspase-mediated inhibition of PARP: A molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 2002; 13(3):978–988.

    Article  PubMed  CAS  Google Scholar 

  61. Lovborg H, Martinsson P, Gullbo J et al. Modulation of pyridyl cyanoguanidine (CHS 828) induced cytotoxicity by 3-aminobenzamide in U-937 GTB cells. Biochem Pharmacol 2002; 63(8):1491–1498.

    Article  PubMed  CAS  Google Scholar 

  62. Fiorillo C, Ponziani V, Giannini L et al. Beneficial effects of poly (ADP-ribose) polymerase inhibition against the reperfusion injury in heart transplantation. Free Radic Res 2003; 37(3):331–339.

    Article  PubMed  CAS  Google Scholar 

  63. Pogrebniak A, Schemainda I, Pelka-Fleischer R et al. Poly ADP-ribose polymerase (PARP) inhibitors transiently protect leukemia cells from alkylating agent induced cell death by three different effects. Eur J Med Res 2003; 8(10):438–450.

    PubMed  CAS  Google Scholar 

  64. Watson AJ, Askew JN, Benson RS. Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterology 1995; 109(2):472–482.

    Article  PubMed  CAS  Google Scholar 

  65. Moroni F, Meli E, Peruginelli F et al. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 2001; 8(9):921–932.

    Article  PubMed  CAS  Google Scholar 

  66. Liu TJ, Lin SY, Chau YP. Inhibition of poly(ADP-ribose) polymerase activation attenuates beta-lapachone-induced necrotic cell death in human osteosarcoma cells. Toxicol Appl Pharmacol 2002; 182(2):116–125.

    Article  PubMed  CAS  Google Scholar 

  67. Nanavaty UB, Pawliczak R, Doniger J et al. Oxidant-induced cell death in respiratory epithelial cells is due to DNA damage and loss of ATP. Exp Lung Res 2002; 28(8):591–607.

    Article  PubMed  CAS  Google Scholar 

  68. Wesierska-Gadek J, Bugajska-Schretter A, Cerni C. ADP-ribosylation of p53 tumor suppressor protein: Mutant but not wild-type p53 is modified. J Cell Biochem 1996; 62(1):90–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Virág, L. (2006). PARP-1 and the Shape of Cell Death. In: Poly(ADP-Ribosyl)ation. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36005-0_13

Download citation

Publish with us

Policies and ethics