Skip to main content

EXPERIMENTAL METHODS IN LOW TEMPERATURE FUEL CELLS

  • Chapter
Fuel Cells
  • 6157 Accesses

Abstract

Experimental methods practiced in the conduct of fuel cell R&D vary from basic electrochemical methods—e.g., rotating-disk electrode (RDE) for evaluation of catalyst activity—to downright applied methods such as electrode preparation. Several review articles in the literature cover specific aspects of such experimental methods. In this Chapter, we attempt to cover many of the experimental methods commonly practiced in a low-temperature fuel cell laboratory, with emphasis on applied aspects. Some mention of techniques that are useful in the investigation of various aspects of fuel cells, but are specialized research topics, will be presented but not described in detail. Reference articles will be noted to allow the reader to study them if desired. This Chapter is organized beginning with the preparation and characterization of the components of a fuel cell and progresses through the fabrication and evaluation of a full cell. The outline of the Chapter is shown in Table 6.1 for ease in finding those topics of particular interest to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.S. Patent 4,438,216, March 20, 1984; 3,307,977, March 1967; 3,405,010, Oct 1968.

    Google Scholar 

  2. R. K. Sen and E. B. Yeager, Annual Report on Contract EC-77-C-02-4146, Submitted to DOE, Jan 15, 1980.

    Google Scholar 

  3. H. Jahnke, M. Schonborn, and G. Zimmermann, Organic Dyestuffs as catalysts for fuel cells, in Topics in Current Chemistry (Springer-Verlag, Heidelberg, 1975).

    Google Scholar 

  4. D. A. Landsman and F. J.Luczak, U.S.Patent 4,316,944 Feb 23, 1982.

    Google Scholar 

  5. P. N. Ross, Jr., EPRI Report EM-1553, September 1980.

    Google Scholar 

  6. J. L. Carter, J. A. Cusumano, and J. H. Sinfelt, J. Catal. 20, 223 (1971).

    Article  CAS  Google Scholar 

  7. M. Watanabe, M. Uchida, and S. Motoo, J. Electroanal. Chem. 229, 395 (1987).

    Article  CAS  Google Scholar 

  8. J. Giner, J. M. Parry, and S. Smith, Adv. Chem. Ser. No. 90, 151 (1969).

    Google Scholar 

  9. F. J. Luczak, U.S. Patent 5,013,618, May 1991.

    Google Scholar 

  10. V. M. Jalan, U.S.Patent 4,202,934, May 13, 1980.

    Google Scholar 

  11. D. McKee, J. Catal. 8, 240 (1967).

    Article  CAS  Google Scholar 

  12. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, Science, 278, 838 (1997).

    Article  CAS  Google Scholar 

  13. C. Kresge, M. E. Leonowicz, W. Roth, J. Vartuli, and J. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  14. M. Schneider and A. Baiker, Catal Rev. —Sci. Eng. 37, 515 (1995).

    Article  CAS  Google Scholar 

  15. C. Adams, H. Benesi, R. Curtis, and R. Meisenheimer, J. Catal. 1, 336 (1962).

    Article  CAS  Google Scholar 

  16. K. Tsurumi H. Sugimoto, N. Yamamoto, T. Nakamura, and P. Stonehart, U. S. Patent 5,275,999, January 1994.

    Google Scholar 

  17. M. J. Yacaman, Applied Catalysis, 13, 1 (1984).

    Article  CAS  Google Scholar 

  18. A. N. Mansour, J. Cook Jr., and D. Sawyer, J. Chem. Phys., 28, 2330 (1984).

    Google Scholar 

  19. D. E. Sawyers, D. Bunker, in X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES, edited by D. C. Konigsberger and R. Prins (John Wiley & Sons, New York, 1998), p. 211.

    Google Scholar 

  20. B. E. Conway, J. Electroanal. Chem. 524, 4 (2002).

    Article  Google Scholar 

  21. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb, and R. J. Behm, J. Electrochem. Soc. 145, 2354 (1998).

    Article  CAS  Google Scholar 

  22. Y. Mo, S. Sarangapani, A. Li, and D. A. Scherson, J. Electroanal. Chem. 538–539, 35 (2002).

    Article  Google Scholar 

  23. J. C.Huang, R. K. Sen, and E. Yeager, J. Electrochem. Soc. 126, 786 (1979).

    Article  Google Scholar 

  24. I. D. Raistrick, U.S.Patent, 4,876,115, Oct 24, 1989.

    Google Scholar 

  25. L. W. Niedrach et al., “Polytetrafluoroethylene Coated and Bonded Cell Structures”, U. S. Patent 3,432,355, March 11, (1969).

    Google Scholar 

  26. A. J. Appleby and E. B. Yeager, in Assessment of research needs for advanced fuel cells, edited by S. S. Penner (Report Prepared for U.S.DOE, under contract No. DE-AC01-8ER30060,Nov. 1985), p. 141.

    Google Scholar 

  27. T. Kawahara et al., Method of manufacture of electrodes, U.S.Patent 6,653,252, (Nov 25, 2003); A. Datz et al., Screen printing paste and method of fabricating gas diffusion electrode, U.S.Patent 6,645,660 (Nov 11, 2003); W. Gervais et al., Aqueous ionomeric gels and products and methods, U.S.Patent, 6,679,979 (Jan 20, 2004); G. J. Goller et al., Screen printing method for making an electrochemical cell electrode, U.S.Patent 4,185,131 (Jan 22, 1980).

    Google Scholar 

  28. F. Solomon and C. Grun, U.S.Patent, 4,379,772 (April 12, 1983).

    Google Scholar 

  29. K. Kordesch and G. Simader, Fuel Cells and their Applications (John Wiley & Sons, NY, 1996).

    Google Scholar 

  30. S. Kratohvil and E. Matijevic, J. ColloidInterf. Sci. 57, 104 (1976).

    Article  CAS  Google Scholar 

  31. C. Orr, in Porous Electrodes: Theory and Practice, Proceedings Vol. 84-8, (The Electrochemical Society, Pennington, NJ, 1984), p. 278.

    Google Scholar 

  32. A. Jena and K. Gupta, J. Power Sources, 96, 214 (2001).

    Article  CAS  Google Scholar 

  33. Y. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, and I. A. Blinov, Colloids and Surfaces A 187–188, 349 (2001).

    Article  Google Scholar 

  34. J. Giner and S. Smith, Electrochem. Technology 5, 59 (1967).

    CAS  Google Scholar 

  35. H. R. Kunz and G. A. Graver, J. Electrochem. Soc., 122, 1279 (1975).

    Article  CAS  Google Scholar 

  36. E. C. Potter, Electrochemistry: Principles and Applications (Cleaver-Hume Press, London, 1956).

    Google Scholar 

  37. J. Giner, J. Electrochem. Soc., 111, 376 (1964)

    Article  CAS  Google Scholar 

  38. L.W. Niedrach, “Fuel Cell”, U.S. Patent 3,134,697, May 26 (1964).

    Google Scholar 

  39. M. Wilson, U.S. Patent 5,211,984 (May 18, 1993); 5,234,777 (Aug 10, 1993).

    Google Scholar 

  40. M. S.Wilson and S. Gottesfeld, J. Appl. Electrochem., 22, 1 (1992).

    Article  CAS  Google Scholar 

  41. S. Srinivasan, D. J. Manko, H. Koch, M. A. Enayetullah, and A. J. Appleby, J. Power Sources, 29, 267 (1990).

    Article  Google Scholar 

  42. A. Kuver, I. Vogel, and W.Vielstich, J. Power Sources 52, 77 (1994).

    Article  Google Scholar 

  43. W. K. Lee, C-H. Ho, J. W. Van Zee, and M. Murthy, J. Power Sources 84, 45 (1999).

    Article  CAS  Google Scholar 

  44. Fuel Cell Magazine, Februay/March 2004 issue, Webcom Communications Corp., Greenwood Village, CO.; http://www.fuelcell-magazine.com/eprints/ free/advancedmeasurementsfeb04 .pdf.

    Google Scholar 

  45. http://zone.ni.com/devzone/conceptd.nsf/webmain/ 8578FE9EAE5B7C4186256AA20054E325.

    Google Scholar 

  46. M. Smith, K. Cooper, D. Johnson, and L. Scribner, Fuel Cell — A Webcom Publication (April/May 2005) p. 26; also accessible at www.Fuelcell-Magazine.com.

    Google Scholar 

  47. L. J. Bregoli, Electrochimica, Acta 23, 489 (1978).

    Article  CAS  Google Scholar 

  48. B. M. Rush, J. A. Reimer, and E. J. Cairns, J. Electrochem. Soc. 148, A137 (2001).

    Article  CAS  Google Scholar 

  49. R. deLevie, in Advances in Electrochemistry and Electrochemical Engineering, edited by P. Delahay and C. W. Tobias (Wiley Interscience, N. Y., 1967) Vol. 6, p. 329.

    Google Scholar 

  50. K. Mund, Siemens Forschungs-Entwicklungsber 4 68 (1975); K. Mund, M. Edeling, and G. Richter, in Porous Electrodes, Theory and Practice, PV84-8, (The Electrochemical Society, Pennington, NJ, 1984) p. 336.

    CAS  Google Scholar 

  51. I. D. Raistrick, Electrochimica Acta 35, 1579(1990).

    Article  CAS  Google Scholar 

  52. J. R. Selman and Y. P. Lin, Electrochimica Acta, 3, (1993); W. Jenseit et al., Electrochimica Acta 38, 2115 (1993); M. Ciureanu, S. D. Mikhailenko, and S. Kaliaquine, Catalysis Today 82, 195 (2003).

    Article  CAS  Google Scholar 

  53. J. T. Mueller and P. M. Urban, J. Power Sources 75, 139 (1998)

    Article  CAS  Google Scholar 

  54. Z. Qi, and A. Kaufman, J. Power Sources 110, 177 (2002).

    Article  CAS  Google Scholar 

  55. H. Dohle, J. Divisek, J. Mergel, H. F. Oetjen, C. Zingler, and D. Stolten, J. Power Sources 105, 274 (2002).

    Article  CAS  Google Scholar 

  56. X. Ren, T. A. Zawodzinski, F. Uribe, H. Dai, and S. Gottesfeld, in Proton Conducting Membrane Fuel Cells I, ECS Proceedings (The Electrochemical Society, Pennington, NJ, 1995) Vol. 95-23, p. 284.

    Google Scholar 

  57. A. Heinzel and V. M. Barragan, J. Power Sources 84, 70 (1999).

    Article  CAS  Google Scholar 

  58. A. S. Arico, P. Creti, Z. Poltarzewski, R. Mantegna, H. Kim, N. Giordano, and V. Antonucci, Materials Chemistry and Physics 47, 257 (1997).

    Article  CAS  Google Scholar 

  59. V. Radmilovic, H. A. Gasteiger, and P. N. Ross, J. Catal. 154, 98 (1995).

    Article  CAS  Google Scholar 

  60. D. J. Kampe, Application of electron microscopy to electrochemical analysis, in Comprehensive Treatise of Electrochemistry, Vol. 8: Experimental Methods in Electrochemistry, edited by R. E. White, J. O’M. Bockris, B. E.Conway and E. Yeager (Plenum Press, New York, 1984) Ch. 10, p. 475.

    Google Scholar 

  61. M. Watanabe, H. Igarashi, H. Uchida, and F. Hirasawa, J. Electroanal. Chem. 399, 239 (1995).

    Article  Google Scholar 

  62. R. J. Bellows, M. Y. Lin, M. Arif, A. K. Thompson, and D. Jacobson, J. Electrochem. Soc. 146, 1099 (1999).

    Article  CAS  Google Scholar 

  63. R. Satija, D. L. Jacobson, M. Arif, and S. A. Werner, J. Power Sourcesv 129, 238–245 (2004).

    Article  CAS  Google Scholar 

  64. S. Tsushima, K. Teranishi, and S. Hirai, Electrochem. and Solid State Letters 7, A269 (2004).

    Article  CAS  Google Scholar 

  65. K. Feindel, L. P.-A. LaRocque, D. Cao, R. Du, R. E. Wasylishen, and S. H. Bergens, The 207th Meeting of ECS, Quebec City, Canada, May 2005, Abstract 1570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Luczak, F., Sarangapani, S. (2006). EXPERIMENTAL METHODS IN LOW TEMPERATURE FUEL CELLS. In: Fuel Cells. Springer, Boston, MA. https://doi.org/10.1007/0-387-35402-6_6

Download citation

Publish with us

Policies and ethics