Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 743 Accesses

Abstract

Cytogenetic analysis is a powerful tool that allows analysis of chromosomal aberrations associated with diseased states. In particular, a combination of cytogenetic techniques has allowed the identification of aberrations associated with cancer development, including cancers of the skin. This chapter provides a comprehensive overview of cytogenetic alterations in basal and squamous cell carcinomas of the skin. These two distinct lesions have altered karyotypes that are consistent with their malignant potential. Basal cell carcinomas, although relatively stable lesions, are highly associated with recurrent aberrations of chromosomes 6, 7, 9 and X, as detected by a number of cytogenetic techniques. Squamous cell carcinomas, on the other hand are associated with a much higher degree of instability, involving aberrations of chromosomes 3, 7, 8, 11, 13, 17 and 18, as detected using a number of cytogenetic techniques. Overall, the numbers and types of aberrations associated with basal and squamous cell carcinoma, define the characteristic behaviour associated with these lesions and identification of these aberrations may aid in the understanding of malignant potential, prognosis and treatment of these skin cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jin Y, Martins C, Jin C et al. Nonrandom karyotypic features in squamous cell carcinomas of the skin. Genes Chromosomes Cancer 1999; 26(4):295–303.

    Article  PubMed  CAS  Google Scholar 

  2. Fortier-Beaulieu M, Laquerriere A, Thomine E et al. DNA flow-cytometric analysis of basal cell carcinomas and its relevance to their morphological differentiation: A retrospective study. Dermatology 1994; 188(2):94–99.

    PubMed  CAS  Google Scholar 

  3. Rapi S, Caldini A, Fanelli A et al. Flow cytometric measurement of DNA content in human solid tumors: A comparison with cytogenetics. Cytometry 1996; 26(3): 192–197.

    Article  PubMed  CAS  Google Scholar 

  4. Rees JL, Healy E. Molecular genetic approaches to nonmelanoma and melanoma skin cancer. Clin Exp Dermatol 1996; 21(4):253–262.

    Article  PubMed  CAS  Google Scholar 

  5. Herzberg AJ, Garcia JA, Kerns BJ et al. DNA ploidy of basal cell carcinoma determined by image cytometry of fresh smears. J Cutan Pathol 1993; 20(3):216–222.

    Article  PubMed  CAS  Google Scholar 

  6. Pilch H, Weiss J, Heubner C et al. Differential diagnosis of keratoacanthomas and squamous cell carcinomas: Diagnostic value of DNA image cytometry and p53 expression. J Cutan Pathol 1994; 21(6):507–513.

    PubMed  CAS  Google Scholar 

  7. Tamura A, Ohnishi K, Ishikawa O et al. Flow cytometric DNA content analysis of ultraviolet light-induced squamous cell carcinomas: A comparative study of squamous cell carcinomas of the lip and those arising from other sites of sun-damaged skin. Acta Derm Venereol 1997; 77(6):425–427.

    PubMed  CAS  Google Scholar 

  8. Herzberg AJ, Kerns BJ, Pollack SV et al. DNA image cytometry of keratoacanthoma and squamous cell carcinoma. J Invest Dermatol 1991; 97(3):495–500.

    Article  PubMed  CAS  Google Scholar 

  9. Pappas AA, Maners AW, Owens RB et al. Deoxyribonucleic acid (DNA) ploidy and proliferative characteristics of metastatic squamous cell carcinoma determined by flow cytometric analysis. J Dermatol Surg Oncol 1992; 18(11):957–960.

    PubMed  CAS  Google Scholar 

  10. Casalone R, Mazzola D, Righi R et al. Cytogenetic and interphase FISH analyses of 73 basal cell and three squamous cell carcinomas: Different findings in direct preparations and short-term cell cultures. Cancer Genet Cytogenet 2000; 118(2):136–143.

    Article  PubMed  CAS  Google Scholar 

  11. James L, Varley J. Advances in cytogenetic analysis of solid tumours. Chromosome Res 1996; 4(7):479–485.

    Article  PubMed  CAS  Google Scholar 

  12. Jin Y, Martins C, Salemark L et al. Nonrandom karyotypic features in basal cell carcinomas of the skin. Cancer Genet Cytogenet 2001; 131(2):109–119.

    Article  PubMed  CAS  Google Scholar 

  13. Jin Y, Mertens F, Persson B et al. Nonrandom numerical chromosome abnormalities in basal cell carcinomas. Cancer Genet Cytogenet 1998; 103(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  14. Jin Y, Merterns F, Persson B et al. The reciprocal translocation t(9;16)(q22;p13) is a primary chromosome abnormality in basal cell carcinomas. Cancer Res 1997; 57(3):404–406.

    PubMed  CAS  Google Scholar 

  15. Mertens F, Heim S, Mandahl N et al. Cytogenetic analysis of 33 basal cell carcinomas. Cancer Res 1991; 51(3):954–957.

    PubMed  CAS  Google Scholar 

  16. Kawasaki-Oyama RS, Andre FS, Caldeira LF et al. Cytogenetic findings in two basal cell carcinomas. Cancer Genet Cytogenet 1994; 73(2):152–156.

    Article  PubMed  CAS  Google Scholar 

  17. Aledo R, Aurias A, Chretien B et al. Jumping translocation of chromosome 14 in a skin squamous cell carcinoma from a xeroderma pigmentosum patient. Cancer Genet Cytogenet 1988; 33(1):29–33.

    Article  PubMed  CAS  Google Scholar 

  18. Worsham MJ, Carey TE, Benninger MS et al. Clonal cytogenetic evolution in a squamous cell carcinoma of the skin from a xeroderma pigmentosum patient. Genes Chromosomes Cancer 1993; 7(3):158–164.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson CT, Gray JW. Cytogenetic profiling using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). J Cell Biochem Suppl 1993; 17G: 139–143.

    Article  PubMed  CAS  Google Scholar 

  20. Nangia R, Sait SN, Block AW et al. Trisomy 6 in basal cell carcinomas correlates with metastatic potential: A dual color fluorescence in situ hybridization study on paraffin sections. Cancer 2001; 91(10):1927–1932.

    Article  PubMed  CAS  Google Scholar 

  21. Cheville JC, Bromley C, Argenyi ZB. Trisomy 7 in keratoacanthoma and squamous cell carcinoma detected by fluorescence in-situ hybridization. J Cutan Pathol 1995; 22(6):546–550.

    Article  PubMed  CAS  Google Scholar 

  22. Dobler M, Schuh J, Kiesewetter F et al. Deletion monitoring in skin tumors by interphase-FISH using band-specific DNA probes. Int J Oncol 1999; 14(3):571–576.

    PubMed  CAS  Google Scholar 

  23. Kallioniemi A, Visakorpi T, Karhu R et al. Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods 1996; 9(1): 113–121.

    Article  PubMed  CAS  Google Scholar 

  24. Ashton KJ, Weinstein SR, Maguire DJ et al. Molecular cytogenetic analysis of basal cell carcinoma DNA using comparative genomic hybridization. J Invest Dermatol 2001; 117(3):683–686.

    Article  PubMed  CAS  Google Scholar 

  25. Happle R. Loss of heterozygosity in human skin. J Am Acad Dermatol 1999; 41(2 Pt 1):143–164.

    Article  PubMed  CAS  Google Scholar 

  26. Holmberg E, Rozell BL, Toftgard R. Differential allele loss on chromosome 9q22.3 in human nonmelanoma skin cancer. Br J Cancer 1996; 74(2):246–250.

    PubMed  CAS  Google Scholar 

  27. Manfredi M, Vescovi P, Bonanini M et al. Nevoid basal cell carcinoma syndrome: A review of the literature. Int J Oral Maxillofac Surg 2004; 33(2): 117–124.

    Article  PubMed  CAS  Google Scholar 

  28. Quinn AG, Sikkink S, Rees JL. Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. Cancer Res 1994; 54(17):4756–4759.

    PubMed  CAS  Google Scholar 

  29. Bale SJ. The “sins” of the fathers: Self-healing squamous epithelioma in Scotland. J Cutan Med Surg 1999; 3(4):207–210.

    PubMed  CAS  Google Scholar 

  30. Richards FM, Goudie DR, Cooper WN et al. Mapping the multiple self-healing squamous epithe lioma (MSSE) gene and investigation of xeroderma pigmentosum group A (XPA) and PATCHED (PTCH) as candidate genes. Hum Genet 1997; 101(3):317–322.

    Article  PubMed  CAS  Google Scholar 

  31. Eklund LK, Lindstrom E, Unden AB et al. Mutation analysis of the human homologue of Drosophila patched and the xeroderma pigmentosum complementation group A genes in squamous cell carcinomas of the skin. Mol Carcinog 1998; 21(2):87–92.

    Article  PubMed  CAS  Google Scholar 

  32. Ashton KJ, Weinstein SR, Maguire DJ et al. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol 2003; 139(7):876–882.

    Article  PubMed  CAS  Google Scholar 

  33. Squire JA, Bayani J, Luk C et al. Molecular cytogenetic analysis of head and neck squamous cell carcinoma: By comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck 2002; 24(9):874–887.

    Article  PubMed  Google Scholar 

  34. Popp S, Waltering S, Holtgreve-Grez H et al. Genetic characterization of a human skin carcinoma progression model: From primary tumor to metastasis. J Invest Dermatol 2000; 115(6):1095–1103.

    Article  PubMed  CAS  Google Scholar 

  35. Popp S, Waltering S, Herbst C et al. UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer 2002; 99(3):352–360.

    Article  PubMed  CAS  Google Scholar 

  36. Fearon ER, Pierceall WE. The deleted in colorectal cancer (DCC) gene: A candidate tumour sup pressor gene encoding a cell surface protein with similarity to neural cell adhesion molecules. Cancer Surv 1995; 24:3–17.

    PubMed  CAS  Google Scholar 

  37. Kelker W, Van Dyke DL, Worsham MJ et al. Loss of 18q and homozygosity for the DCC locus: Possible markers for clinically aggressive squamous cell carcinoma. Anticancer Res 1996; 16(4C):2365–2372.

    PubMed  CAS  Google Scholar 

  38. Ahmadian A, Ren ZP, Williams C et al. Genetic instability in the 9q22.3 region is a late event in the development of squamous cell carcinoma. Oncogene 1998; 17(14):1837–1843.

    Article  PubMed  CAS  Google Scholar 

  39. Wong CS, Strange RC, Lear JT. Basal cell carcinoma. Bmj 2003; 327(7418):794–798.

    Article  PubMed  CAS  Google Scholar 

  40. Knuutila S, Bjorkqvist AM, Autio K et al. DNA copy number amplifications in human neoplasms: Review of comparative genomic hybridization studies. Am J Pathol 1998; 152(5):1107–1123.

    PubMed  CAS  Google Scholar 

  41. Ziegler A, Jonason AS, Leffell DJ et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372(6508):773–776.

    Article  PubMed  CAS  Google Scholar 

  42. Taguchi M, Watanabe S, Yashima K et al. Aberrations of the tumor suppressor p53 gene and p53 protein in solar keratosis in human skin. J Invest Dermatol 1994; 103(4):500–503.

    Article  PubMed  CAS  Google Scholar 

  43. Pathak S. Cytogenetics of epithelial malignant lesions. Cancer 1992; 70(6 Suppl): 1660–1670.

    Article  PubMed  CAS  Google Scholar 

  44. Pollack JR, Perou CM, Alizadeh AA et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23(1):41–46.

    Article  PubMed  CAS  Google Scholar 

  45. Snijders AM, Nowak N, Segraves R et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 2001; 29(3):263–264.

    Article  PubMed  CAS  Google Scholar 

  46. Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science 1996; 274(5289):998–1001.

    Article  PubMed  CAS  Google Scholar 

  47. Bonner RF, Emmert-Buck M, Cole K et al. Laser capture microdissection: Molecular analysis of tissue. Science 1997; 278(5342):1481–1483.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyn R. Griffiths .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Carless, M.A., Ashton, K.J., Griffiths, L.R. (2006). Cytogenetics of Basal Cell Carcinoma and Squamous Cell Carcinomas. In: Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-35098-5_6

Download citation

Publish with us

Policies and ethics