Skip to main content

Inherited Thrombophilias and Early Pregnancy Loss

  • Chapter
Immunology of Pregnancy

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Inherited thrombophilias are a heterogeneous group of conditions which have been associated with a variety of pregnancy complications, including early and late fetal loss, intrauterine growth restriction, abruptio placentae, and preeclampsia.1 As the functional significance of the burgeoning list of thrombophilic conditions is better understood, more rational and thoughtful approach to their detection and usefulness in clinical practice will likely emerge. While dominant conditions, such as antithrombin deficiency are rarely present without clinical manifestations, other less thrombogenic mutations, such as factor V Leiden, often are not associated with obvious pregnancy complications, as noted by the finding that the presence of heterozygous factor V Leiden is associated with a 0.2% risk of maternal thromboembolism. Emerging data suggests the quality and quantity of thrombophilic conditions, in addition to genetic and environmental influences create a ‘threshold milieu’ for the clinical manifestation of these heterogeneous prothrombotic conditions. This review will summarize the current knowledge of thrombophilic conditions and their association with first trimester pregnancy outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paidas MJ, Ku DW, Arkel YS. Screening and management of inherited thrombophilias in the setting of adverse pregnancy outcome. Clin Perinatol 2004; 783–805.

    Google Scholar 

  2. Greer IA. Epidemiology, risk factors and prophylaxis of venous thromboembolism in Obstetrics and Gynecology. Clin Obstet Gynecol 1997; 11:403–30.

    CAS  Google Scholar 

  3. Greer IA. Thrombosis in pregnancy:maternal and fetal issues. Lancet 1999; 353:1258–65.

    Article  PubMed  CAS  Google Scholar 

  4. Lindqvist P, Dahlback B, Marsal K. Thrombotic risk during pregnancy: A population study. Obstet Gynecol 1999; 94:595–9.

    Article  PubMed  CAS  Google Scholar 

  5. Andersen BS, Steffensen FH, Sorensen HT et al. The cumulative incidence of venous thromboembolism during pregnancy and puerperium. Acta Obstet Gynecol Scand 1998; 77:170–3.

    Article  PubMed  CAS  Google Scholar 

  6. Hellgren M, Blomback M. Studies on blood coagulation and fibrinolysis in pregnancy, during delivery and in the puerperium. Gynecol Obstet Invest 1981; 12:141–54.

    Article  PubMed  CAS  Google Scholar 

  7. Stirling Y, Woolf L, North WR et al. Haemostasis in normal pregnancy. Thromb Haemost 1984; 52:176–182.

    PubMed  CAS  Google Scholar 

  8. Comp PC, Thurnau GR, Welsh J et al. Functional and immunologic protein S levels are decreased during pregnancy. Blood 1986; 68:881–885.

    PubMed  CAS  Google Scholar 

  9. Cumming AM, Tait RC, Fildes S et al. Development of resistance to activated protein C during pregnancy. Brit Journal of Haematology 1995; 90:725–727.

    CAS  Google Scholar 

  10. Bremme KA. Hemostatic changes in pregnancy. Best Pract Res Clin Haematol 2003; 16(2):153–168.

    Article  PubMed  Google Scholar 

  11. Brenner B. Haemostatic changes in pregnancy. Thromb Res 2004; 114(5–6):409–14.

    Article  PubMed  CAS  Google Scholar 

  12. Ku DH, Arkel YS, Paidas MP et al. Circulating levels of inflammatory cytokines (IL-1 beta and TNF-alpha), resistance to activated protein C, thrombin and fibrin generation in uncomplicated pregnancies. Thrombosis Haemostasis 2003; 90(6):1074–9.

    CAS  Google Scholar 

  13. Dahlback B. Inherited resistance to activated protein C, a major cause of venous thrombosis, is due to a mutation in the factor V gene. Haemostasis 1994; 24(2):139–51.

    PubMed  CAS  Google Scholar 

  14. Lockwood CJ. Inherited thrombophilias in pregnant patients. Prenat Neonat Med 2001; 6:3–14.

    CAS  Google Scholar 

  15. Voorberg J, Roeise J, Koopman R et al. Association of idiopathic venous thromboembolism with single point-mutation at Arg 506 of factor V. Lancet 1994; 343:1535–6.

    Article  PubMed  CAS  Google Scholar 

  16. Ridker PM, Miletich JP, Hennekens CH et al. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 1997; 277:1305–7.

    Article  PubMed  CAS  Google Scholar 

  17. Poort SR. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88(10):3698–3703.

    PubMed  CAS  Google Scholar 

  18. Gerhardt A, Eberhard Scharf R, Wilhelm Beckmann M et al. Prothrombin and factor V mutations in women with a history of thrombosis during pregnancy and the puerperium. N Engl J Med 2000; 342:374–380.

    Article  PubMed  CAS  Google Scholar 

  19. Girling J, de Swiet M. Inherited thrombophilia and pregnancy. Curr Opin Obstet Gynecol 1998; 10:135–44.

    Article  PubMed  CAS  Google Scholar 

  20. Lane DA, Bayston T, Olds RJ et al. Antithrombin mutation database: 2nd (1997) update. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 1997; 77:197–211.

    PubMed  CAS  Google Scholar 

  21. Lockwood CJ. Inherited thrombophilias in pregnant patients: Detection and treatment paradigm. Obstet Gynecol 2002; 99(2):333–41.

    Article  PubMed  Google Scholar 

  22. Greenberg DL, Davie EW. Chapter 3, blood coagulation factors. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, eds. Hemostasis and Thrombosis, Basic Principles and Clinical Practice. 4th Ed. Lippincott Williams and Wilkins, Publishers, 2001.

    Google Scholar 

  23. Dahlback B. Protein S and C4b-binding protein: Components involved in the regulation of the protein C anticoagulant pathway. Thromb Haemost 1991; 66:49–61.

    PubMed  CAS  Google Scholar 

  24. Mosnier LO, Meijers JCM, Bouma BN. The role of protein S in the activation of TAFI and regulation of fibrinolysis. Thromb Haemost 2001; 86:1035–1039.

    PubMed  CAS  Google Scholar 

  25. Dykes AC, Walker ID, McMahon AD et al. A study of Protein S antigen levels in 3788 healthy volunteers: Influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br J Haematol 2001; 113:636.

    Article  PubMed  CAS  Google Scholar 

  26. Comp PC, Thurnau GR, Welsh J et al. Functional and immunologic protein S levels are decreased during pregnancy. Blood 1986; 68:881–885.

    PubMed  CAS  Google Scholar 

  27. Cumming AM, Tait RC, Fildes S et al. Development of resistance to activated protein C during pregnancy. Br J Haematol 1995; 90:725–7.

    PubMed  CAS  Google Scholar 

  28. Sugimura M, Kobayashi T, Kanayama N et al. Detection of decreased response to activated protein C during pregnancy by an endogenous thrombin potential-based assay. Semin Thromb Hemost 1999; 25(5):497–502.

    Article  PubMed  CAS  Google Scholar 

  29. Prager NA, Abendschein DR, McKenzie CR et al. Role of thrombin compared with factor Xa in the procoagulant activity of whole blood clots. Circulation 1995; 92:962–967.

    PubMed  CAS  Google Scholar 

  30. Paidas MJ, Ku DH, Lee MJ et al. Protein Z, protein S levels are lower in patients with thrombophilia and subsequent pregnancy complications. J Thromb Hemost 2005; 3(3):497–501.

    Article  CAS  Google Scholar 

  31. Paidas M, Ku DW, Arkel Y et al. Normal pregnancy is associated with the development of Protein S and Protein Z antibodies, independent of PS and PZ level. AM J Obstet Gynecol 2004; 191(6):S491.

    Google Scholar 

  32. Han X, Fiehler R, Broze GJ Jr. Characterization of the protein Z-dependent protease inhibitor. Blood 2000; 96:3049–55.

    PubMed  CAS  Google Scholar 

  33. Kemkes-Matthes B, Matthes KJ. Protein Z. Seminars Thromb Hemost 2001; 5:551–6.

    Article  Google Scholar 

  34. Broze GJ Jr. Protein Z-dependent regulation of coagulation. Thromb Haemost 2001; 86:8–13.

    PubMed  CAS  Google Scholar 

  35. Broze GJ Jr. Protein-Z and thrombosis. Lancet 2001; 357:933–4.

    Article  Google Scholar 

  36. Han X, Huang ZF, Fiehler R et al. The protein Z-dependent protease inhibitor is a serpin. Biochemistry 1999; 38:11073–8.

    Article  PubMed  CAS  Google Scholar 

  37. Yurdakok M, Gurakan B, Ozbag E et al. Plasma protein Z levels in healthy newborn infants. Am J Hematol 1995; 48:206–7.

    Article  PubMed  CAS  Google Scholar 

  38. Miletich JP, Broze Jr GJ. Human plasma protein Z antigen: Range in normal subjects and effect of w3arfarin therapy. Blood 1987; 69:1580–6.

    PubMed  CAS  Google Scholar 

  39. Kemkes-Matthes B, Nees M, Kuhnel G et al. Protein Z influences the prothrombotic phenotype in factor V Leiden patients. Thromb Res 2002; 106:183–5.

    Article  PubMed  CAS  Google Scholar 

  40. McColl MD, Deans A, Maclean P et al. Plasma protein Z deficiency is common in women with antiphospholipid antibodies. Br J Haematol 2003; 120:913–4.

    Article  PubMed  CAS  Google Scholar 

  41. Steffano B, Forastiero R, Martinuzzo M et al. Low plasma protein Z levels in patients with antiphospholipid antibnodies. Blood Coagul Fibrinolysis 2001; 12:411–2.

    Article  PubMed  CAS  Google Scholar 

  42. Gamba G, Bertolino G, Montani N et al. Bleeding tendency of un known origin and protein Z levels. Thromb Res 1998; 90:291–5.

    Article  PubMed  CAS  Google Scholar 

  43. Wuillemin WA, Demarmels Biasiutti F, Mattle HP et al. Frequency of PZ deficiency in patients with ischemic stroke. Lancet 2001; 358:840–1.

    Article  PubMed  CAS  Google Scholar 

  44. Gris JC, Quere I, Dechaud H et al. High frequency of protein Z deficiency in patients with unexplained early fetal loss. Blood 2002; 99:2606–8.

    Article  PubMed  CAS  Google Scholar 

  45. Gris JC, Mercier E, Quere II et al. Low-molecular-weight heparin versus low-dose aspirin in women with one fetal loss and a constitutional thrombophilic disorder. Blood 2004; 103(10):3695–3699.

    Article  PubMed  CAS  Google Scholar 

  46. Gris JC, Amadio C, Mercier E et al. Anti-protein Z antibodies in women with pathologic pregnancies. Blood 2003; 101:4850–4852.

    Article  PubMed  CAS  Google Scholar 

  47. Foka ZJ, Lambropoulos AF, Saravelos H et al. Factor V leiden and prothrombin G20210A mutations, but not methylenetetrahydrofolate reductase C677T, are associated with recurrent miscarriages. Hum Reprod 2000; 15:458–62.

    Article  PubMed  CAS  Google Scholar 

  48. Roque H, Paidas MJ, Funai EF et al. Maternal thrombophilias are not associated with early pregnancy loss. Thromb Haemost 2004; 91(2):290–5.

    PubMed  CAS  Google Scholar 

  49. Murphy RP, Donoghue C, Nallen RJ et al. Prospective evaluation of the risk conferred by factor V Leiden and thermolabile methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler Thromb Vase Biol 2000; 20:266–70.

    CAS  Google Scholar 

  50. Nelen WL, Blom HJ, Steegers EA et al. Hyperhomocysteinemia and recurrent early pregnancy loss: A meta-analysis. Fertil Steril 2000; 74:1196.

    Article  PubMed  CAS  Google Scholar 

  51. Rey E, Kahn SR, David M et al. Thrombophilic disorders and fetal loss: A meta-analysis. Lancet 2003; 361(9361):901–908.

    Article  PubMed  Google Scholar 

  52. Hunt LT, Dayhoff MO. A surprising new protein superfamily containing ovalbumin, antithrombin-III, and alpha-1 proteinase inhibitor. Biochem biophys res comm 1980; 95(2):864–71.

    Article  PubMed  CAS  Google Scholar 

  53. Gettins P, Patson DP, Schapira M. Structure and mechanism of action of serpins. Hematol Oncol Clin North Am 1992; 6(6):1393–1418.

    PubMed  CAS  Google Scholar 

  54. Andreasen PA, Georg B, Lund LR et al. Plasminogen activator inhibitors: Hormonally regulated serpins. Molec Cell Endocrin 1990; 68:1–19.

    Article  CAS  Google Scholar 

  55. Kruithof EKO, Tran-Thang C, Gudinchet A et al. Fibrinolysis in pregnancy: A study of plasminogen activator inhibitors. Blood 1987; 69(2):460–6.

    PubMed  CAS  Google Scholar 

  56. Gilabert J, Estelles A, Aznar J et al. Contribution of platelets to increased plasminogen activator inhibitor type 1 in severe preeclampsia. Thromb Haemost 1990; 63(3):361–366.

    PubMed  CAS  Google Scholar 

  57. Astedt B, Lecander I, Ny T. The palcental type plasminogen activator inhibitor, PAI-2. Fibrinolysis 1987; 1:203–8.

    Article  Google Scholar 

  58. Astedt B, hagerstrand I, Lecander I. Cellular localisation in placenta of placental type plasminogen activator inhibitor. Thromb Haemost 1986; 56:63–5.

    PubMed  CAS  Google Scholar 

  59. Francis CW. Plasminogen activator inhibitor-1 levels and polymorphisms. Arch Pathol Lab Med 2002; 126(11):1401–4.

    PubMed  CAS  Google Scholar 

  60. Hefler L, Jirecek S, Heim K et al. Genetic polymorphisms associated with thrombophilia and vascular disease in women with unexplained late intrauterine fetal death: A multicenter study. J Soc Gynecol Investig 2004; 11(1):42–4.

    Article  PubMed  CAS  Google Scholar 

  61. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost 2003; 1(7):1515–24.

    Article  PubMed  CAS  Google Scholar 

  62. Paidas MJ, Ku DH, Lee MJ et al. Patients with thrombophilia and subsequent adverse pregnancy outcomes have a decreased first trimester response to thrombomodulin in an activated partial throm-boplastin time (APTT) system. J Thromb Haemost 2004; 2(5):840–1.

    Article  PubMed  CAS  Google Scholar 

  63. Rey E, Kahn SR, David M et al. Thrombophilic disorders and fetal loss: A meta-analysis. Lancet 2003; 361:901–08.

    Article  PubMed  Google Scholar 

  64. Gris JC. Case-control study of the frequency of thrombophilic disorders in couples with late foetal loss and no thrombotic antecedent—the Nimes Obstetricians and Haematologists Study5 (NOHA5). Thromb Haemost 1999; 81(6):891–9.

    PubMed  CAS  Google Scholar 

  65. Martinelli I. Mutations in coagulation factors in women with unexplained late fetal loss. N Engl J Med 2000; 343(14):1015–18.

    Article  PubMed  CAS  Google Scholar 

  66. Martinelli I. Recurrent late fetal death in women with and without thrombophilia. Thromb Haemost 2002; 87:358–9.

    PubMed  CAS  Google Scholar 

  67. Many A, Elad R, Yaron Y et al. Third trimester unexplained intrauterine fetal death is associated with inherited thrombophilia. Obstet Gynecol 2002; 00:684–7.

    Google Scholar 

  68. Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillaires Best Pract Res Clin Obstet Gynaecol 2000; 14:839–54.

    Article  CAS  Google Scholar 

  69. Sullivan AE, Silver RM, LaCoursiere DY et al. Recurrent fetal aneuploidy and recurrent miscarriage. Obstet Gynecol 2004; 104:784–8.

    PubMed  Google Scholar 

  70. Kovalevsky G, Gracia CR, Berlin JA et al. Evaluation of the association between hereditary thrombophilias and recurrent pregnancy loss. Arch Intern Med 2004; 164:558–563.

    Article  PubMed  Google Scholar 

  71. Kujovich JL. Thrombophilia and pregnancy complications. Am J Obstet Gynecol 2004; 191:412–424.

    Article  PubMed  Google Scholar 

  72. Reznikoff-Etievan MF, Cayol V, Carbonne B et al. Factor V Leiden and G20210A prothrombin mutations are risk factors for very early recurrent miscarriage. BJOG 2001; 108(12):1251–4.

    Article  PubMed  CAS  Google Scholar 

  73. Dawood F. Acquired activated protein C resistance may be a risk factor for recurrent fetal loss. Fertil Steril 80(3):649–650.

    Google Scholar 

  74. Duley L, Henderson-Smart D, Knight M et al. Antiplatelet drugs for prevention of preeclampsia and its consequences: Systematic review. BMJ 2001; 322:329–33.

    Article  PubMed  CAS  Google Scholar 

  75. Coomarasamy A. Aspirin for prevention of preeclampsia in women with historical risk factors: A systematic review. Obstet Gynecol 2003; 101(6):1319–32.

    Article  PubMed  CAS  Google Scholar 

  76. Riyazi N, Leeda M, de V J et al. Low-molecular-weight heparin combined with aspirin in pregnant women with thrombophilia and a history of preeclampsia or fetal growth restriction: A preliminary study. Eur J Obstet Gynecol Reprod Biol 1998; 80:49–54.

    Article  PubMed  CAS  Google Scholar 

  77. Brenner B. Gestational outcome in thrombophilic women with recurrent pregnancy loss treated by enoxaparin. Thromb Haemost 2000; 83:693–7.

    PubMed  CAS  Google Scholar 

  78. Ogueh O. Outcome of pregnancy in women with hereditary thrombophilia. Int J Gynaecol Obstet 2001; 74:247–53.

    Article  PubMed  CAS  Google Scholar 

  79. Kupferminc M, Fait G, Many A et al. Low molecular weight heparin for the prevention of obstetric complications in women with thrombophilia. Hypertens in Pregnancy 2001; 20:35–44.

    Article  CAS  Google Scholar 

  80. Grandone E. Preventing adverse obstetric outcomes in women with genetic thrombophilia. Fertil Steril 2002; 78(2):371–5.

    Article  PubMed  Google Scholar 

  81. Paidas M, Ku DH, Triche E et al. Does heparin therapy improve pregnancy outcome in patients with thrombophilias? J Thromb Haemost 2004; 2(7):1194–5.

    Article  PubMed  CAS  Google Scholar 

  82. Brenner B. Enoaparin treatment improves the gestational outcome of pregnant women with thrombophilia and recurrent pregnancy loss: The LIVE-ENOX study. Blood 2003; 102(11): (abs 43).

    Google Scholar 

  83. Sanson BJ, Lensing AW, Prins MH et al. Safety of low-molecular-weight heparin in pregnancy: A systematic review. Thromb Haemost 1999; 81:668–72.

    PubMed  CAS  Google Scholar 

  84. Preston FE, Rosendaal FR, Walker ID et al. Increased fetal loss in women with heritable thrombophilia. Lancet 1996; 348:913–6.

    Article  PubMed  CAS  Google Scholar 

  85. Dizon-Townson D. The incidence of the factor V Leiden mutation in an obstetric population and its relationship to deep vein thrombosis. Am J Obstet Gynecol 1997; 176(4):883–6.

    Article  PubMed  CAS  Google Scholar 

  86. Kupferminc MJ, Eldor A, Steinman N et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 1999; 340:9.

    Article  PubMed  CAS  Google Scholar 

  87. Tal A. A possible role for activated protein C resistance in patients with first and second trimester pregnancy failure. Hum Reprod 1999; 14(6):1624–7.

    Article  PubMed  CAS  Google Scholar 

  88. Lindqvist PG, Dahlback B. Bleeding complications associated with low molecular weight heparin prophylaxis during pregnancy. Thromb Haemost 2000; 84:140–1.

    PubMed  CAS  Google Scholar 

  89. Kupferminc MJ, Peri H, Zwang E et al. High prevalence of the prothrombin gene mutation in women with intrauterine growth retardation, abruptio placentae and second trimester loss. Acta Obstet Gynecol Scand 2000; 79:963–7.

    Article  PubMed  CAS  Google Scholar 

  90. Murphy R. Prospective evaluation of the risk conferred by factor V Leiden and thermolabile methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler Thromb Vase Biol 2000; 20:266–70.

    CAS  Google Scholar 

  91. Alflrevic, Postnatal screening for thrombophilia in women with severe pregnancy complications. Obstet Gynecol 2001; 97(5-part 1):753–9.

    Article  Google Scholar 

  92. Alonso A. Acquired and inherited thrombophilia in women with unexplained fetal losses. Am J Obstet Gynecol 2002; 187(5):1337–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Langhoff-Roos, J., Paidas, M.J., Ku, DH., Arkel, Y.S., Loekwood, C.J. (2006). Inherited Thrombophilias and Early Pregnancy Loss. In: Mor, G. (eds) Immunology of Pregnancy. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-34944-8_20

Download citation

Publish with us

Policies and ethics