Skip to main content

Physics and Instrumentation in PET

  • Chapter
Pediatric PET Imaging

Abstract

The radioactive decay of many radioisotopes generates penetrating photons capable of escaping outside the matter in which the isotopes are located. From this radiation it is possible to image the spatial distribution of such isotopes inside an object. However, by itself the detection of a single photon outside the body of a patient carries minimal information on the location of its origin, unless some device capable of connecting the detection with the emission location is used. These devices are the optics of the imaging instrument and they identify, in combination with a position sensitive radiation detector, a line in space (the line of response, LOR) along which the photon must have originated (Fig. 8.1A,B). The LOR data are manipulated in reconstruction software to produce three-dimensional (3D) images of the activity distribution. When imaging humans, it is necessary to use photons capable of escaping undeflected from a few centimeters of tissue. The energy of these photons is such that their path cannot be bent by reflection (mirrors), refraction (lenses), or diffraction as in visible light optics. Nuclear scintigraphy and single photon emission computed tomography (SPECT) instrumentation resort to absorptive collimation, in which photons are selectively passed or absorbed depending on their emission location and angle of incidence on the optics. The drawback of this approach is that the wide majority of photons are lost before image reconstruction. For example, typical parallel-hole collimators [low energy-technetium-99m (99mTc; 140keV); general purpose] pass on the order of 1 in 10,000 (10-4) photons, but sensitivity is even lower for high-resolution and high-energy collimators, which need lower acceptance angles and thicker septa, respectively. Although sensitivity can be recouped by trading off resolution (as with high-sensitivity collimators) or field-of-view (as with converging collimators), it is the concept of absorptive collimation itself that implies an inefficient use of emitted photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice. New York: Springer-Verlag, 2003.

    Google Scholar 

  2. Bendriem B, Townsend DW. The Theory and Practice of 3D PET. New York: Kluwer Academic Publishers, 1998.

    Google Scholar 

  3. Krane KS. Introductory Nuclear Physics. New York: Wiley, 1987.

    Google Scholar 

  4. Harpen MD. Positronium: review of symmetry, conserved quantities and decay for the radiological physicist. Med Phys 2004;31:57–61.

    Article  CAS  PubMed  Google Scholar 

  5. De Beneditti S, Cowan CE, Konneker WR, et al. On the angular distribution of two-photon annihilation radiation. Phys Rev 1950;77:205–212.

    Article  Google Scholar 

  6. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–799.

    Article  CAS  PubMed  Google Scholar 

  7. Evans RD. The Atomic Nucleus. New York: McGraw-Hill, 1955.

    Google Scholar 

  8. Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49:4593–4610.

    Article  CAS  PubMed  Google Scholar 

  9. Karp JS, Muehllehner G, Mankoff DA, et al. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 1990;31: 617–627.

    CAS  PubMed  Google Scholar 

  10. Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 2001;42:1821–1830.

    CAS  PubMed  Google Scholar 

  11. Surti S, Karp JS, Freifelder R, Liu F. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci 2000;47:1030–1036.

    Article  CAS  Google Scholar 

  12. Nutt R, Casey M, Carroll LR, Dahlbom M, Hoffman EJ. A new multi-crystal two-dimensional detector block for PET. J Nucl Med 1985;26:P28.

    Google Scholar 

  13. Wong WH, Uribe J, Hicks K, Hu GJ. An analog decoding BGO block detector using circular photomultipliers. IEEE T Nucl Sci 1995;42:1095–1101.

    Article  Google Scholar 

  14. Moses WW, Derenzo SE. Design studies for a PET detector module using a pin photodiode to measure depth of interaction. IEEE Trans Nucl Sci 1994;41:1441–1445.

    Article  CAS  Google Scholar 

  15. Casey ME, Eriksson L, Schmand M, et al. Investigation of LSO crystals for high spatial resolution positron emission tomography. IEEE Trans Nucl Sci 1997;44:1109–1113.

    Article  CAS  Google Scholar 

  16. El Fakhri G, Holdsworth C, Badawi RD, et al. Impact of acquisition geometry and patient habitus on lesion detectability in whole-body FDG-PET: a channelized Hotelling observer study. Presented at IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk, VA, 2002.

    Google Scholar 

  17. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T. A normalization technique for 3D PET data. Phys Med Biol 1991;36:939–952.

    Article  CAS  PubMed  Google Scholar 

  18. Bailey DL, Townsend DW, Kinahan PE, Grootoonk S, Jones T. An investigation of factors affecting detector and geometric correction in normalization of 3–D PET data. IEEE Trans Nucl Sci 1996;43:3300–3307.

    Article  Google Scholar 

  19. Badawi RD, Lodge MA, Marsden PK. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET, Phys Med Biol 1998;43:189–205.

    Article  CAS  PubMed  Google Scholar 

  20. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol 1999;44:571–594.

    Article  CAS  PubMed  Google Scholar 

  21. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol 2000;45:3253–3266.

    Article  CAS  PubMed  Google Scholar 

  22. Carroll LR, Kertz P, Orcut G. The orbiting rod source: improving performance in PET transmission correction scans. In: Esser PD, ed. Emission Computed Tomography: Current Trends. Society of Nuclear Medicine, New York, 1983.

    Google Scholar 

  23. Huesman RH, Derenzo SE, Cahoon JL, et al. Orbiting transmission source for positron tomography. IEEE Trans Nucl Sci 1988;35:735–739.

    Article  CAS  Google Scholar 

  24. Daube-Witherspoon M, Carson RE, Green MV. Postinjection transmission attenuation measurements for PET. IEEE Trans Nucl Sci 1988;NS-35:757–761.

    Article  Google Scholar 

  25. deKemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys 1994;21:771–778.

    Article  CAS  PubMed  Google Scholar 

  26. Karp JS, Muehllehner G, Qu H, Yan XH. Single transmission in volumeimaging PET with a Cs-137 source. Phys Med Biol 1995;40:929–944.

    Article  CAS  PubMed  Google Scholar 

  27. Smith RJ, Karp JS. Post-injection transmission scans in a PET camera operating without septa with simultaneous measurement of emission activity contamination. IEEE Trans Nucl Sci 1996;43:2207–2212.

    Article  Google Scholar 

  28. Casey ME, Hoffman EJ. Quantitation in positron emission computedtomography. 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr 1986;10:845–850.

    Article  CAS  PubMed  Google Scholar 

  29. Badawi RD, Miller MP, Bailey DL, Marsden PK. Random variance reduction in 3D PET. Phys Med Biol 1999;44:941–954.

    Article  CAS  PubMed  Google Scholar 

  30. Karp JS, Muehllehner G, Mankoff DA, et al. Continuous-slice PENN-PET—a positron tomograph with volume imaging capability. J Nucl Med 1990; 31:617–627.

    CAS  PubMed  Google Scholar 

  31. Cherry SR, Huang SC. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 1995;42:1174–1179.

    Article  Google Scholar 

  32. Bergstrom M, Martin W, Pate B. A look at anatomical and physiological brain images. Dimensions Health Serv 1983;60:36.

    CAS  Google Scholar 

  33. Hoverath H, Kuebler WK, Ostertag HJ, et al. Scatter correction in the transaxial slices of a whole-body positron emission tomograph. Phys Med Biol 1993;38:717–728.

    Article  Google Scholar 

  34. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994;39:411–424.

    Article  CAS  PubMed  Google Scholar 

  35. Bendriem B, Trebossen R, Frouin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. Presented at 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, 1993.

    Google Scholar 

  36. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 1996;41:2757–2774.

    Article  CAS  PubMed  Google Scholar 

  37. Adam LE, Karp JA, Freifelder R. Energy-based scatter correction for 3–D PET scanners using NaI(Tl) detectors. IEEE Trans Med Imaging 2000;19: 513–521.

    Article  CAS  PubMed  Google Scholar 

  38. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996;41:153–176.

    Article  CAS  PubMed  Google Scholar 

  39. Watson CC, Newport D, Casey ME, deKemp RA, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997;44:90–97.

    Article  Google Scholar 

  40. Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol 2004;49: 2577–2598.

    Article  PubMed  Google Scholar 

  41. Levin CS, Dahlbom M, Hoffman EJ. AMonte-Carlo correction for the effect of Compton-scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 1995;42:1181–1185.

    Article  Google Scholar 

  42. Holdsworth CH, Levin CS, Farquhar TH, Dahlbom M, Hoffman EJ. Investigation of accelerated Monte Carlo techniques for PET simulation and 3D PET scatter correction. IEEE Trans Nucl Sci 2001;48:74–81.

    Article  Google Scholar 

  43. Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 2002;49:83–89.

    Article  Google Scholar 

  44. Lewitt RM, Matej S. Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 2003;91:1588–1611.

    Article  Google Scholar 

  45. Defrise M, Kinahan PE, Michel C. Image reconstruction algorithms in PET. In: Valk PE, Bailey D, Townsend DW, Maisey MN, eds. Positron Emission Tomography: Basic Science and Clinical Practice. New York: Springer-Verlag, 2003:91–114.

    Google Scholar 

  46. Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in threedimensional PET. J Nucl Med 1987;28:1717–1724.

    CAS  PubMed  Google Scholar 

  47. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imaging 1997;11:145–158.

    Article  Google Scholar 

  48. Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–122.

    Article  Google Scholar 

  49. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–316.

    CAS  PubMed  Google Scholar 

  50. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–609.

    Article  CAS  PubMed  Google Scholar 

  51. DePierro AR. On some nonlinear iterative relaxation methods in remote sensing. Matematica Aplicada Computacional 1989;8:153–166.

    Google Scholar 

  52. Browne JA, DePierro AR. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imaging 1996;15:687–699.

    Article  CAS  PubMed  Google Scholar 

  53. Daube-Witherspoon ME, Matej S, Karp JS. Assessment of image quality with a fast fully 3D reconstruction algorithm. In: Siebert JA, ed. 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2002:M14–12.

    Google Scholar 

  54. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;46:468–473.

    Article  Google Scholar 

  55. Tai YC, Chatziioannou AF, Yang YF, et al. MicroPET II: design, development and initial performance of an improved microPET scanner for smallanimal imaging. Phys Med Biol 2003;48:1519–1537.

    Article  PubMed  Google Scholar 

  56. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity—relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990;37:783–788.

    Article  Google Scholar 

  57. Jadvar H, Connolly LP, Shulkin BL. PET imaging in pediatric disorders. In: Valk PE, Bailey D, Townsend DW, Maisey MN, eds. Positron Emission Tomography: Basic Science and Clinical Practice. New York: Springer-Verlag, 2003:755–774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Accorsi, R., Surti, S., Karp, J.S. (2006). Physics and Instrumentation in PET. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics