Skip to main content

Soft Tissue Sarcomas

  • Chapter
Pediatric PET Imaging

Abstract

Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. They account for approximately 1% of all cancer diagnoses and 7% of pediatric malignancies (1,2). Just over half of these patients eventually succumb as a result of the disease. Soft tissue sarcomas typically present as asymptomatic large masses within the retroperitoneum or the proximal lower limbs but can also affect other sites of the body. In adults, the most common histologic origins are liposarcomas (21%), malignant fibrous histiocytomas (MFHs) (20%), leiomyosarcomas (20%), fibrosarcomas (11%), and tendosynovial sarcomas (10%) (3). In children, rhabdomyosarcoma comprise approximately 70% of the soft tissue sarcomas (3). Despite this highly variable histopathologic origin, the three negative predictive factors at the time of initial diagnosis for disease-free survival are primary site in the superficial trunk or in the limbs, high tumor grade, and large tumor size, rather than the histologic origin (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA Cancer J Clin 1998;48(1):6–29.

    Article  CAS  PubMed  Google Scholar 

  2. Marina NM, Krance R, Ribeiro RC, Crist WM. Diagnosis and treatment of the most common solid tumors in childhood. Prim Care 1992;19(4): 871–889.

    CAS  PubMed  Google Scholar 

  3. Nijhuis PH, Schaapveld M, Otter R, Molenaar WM, van der Graaf WT, Hoekstra HJ. Epidemiological aspects of soft tissue sarcomas (STS)—consequences for the design of clinical STS trials. Eur J Cancer 1999;35(12): 1705–1710.

    Article  CAS  PubMed  Google Scholar 

  4. Zagars GK, Ballo MT, Pisters PW, Pollock RE, Patel SR, Benjamin RS. Prognostic factors for disease-specific survival after first relapse of soft-tissue sarcoma: analysis of 402 patients with disease relapse after initial conservative surgery and radiotherapy. Int J Radiat Oncol Biol Phys 2003;57(3): 739–747.

    Article  PubMed  Google Scholar 

  5. Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F, et al. Clinical value of [18–F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 2000;231(3):380–386.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe H, Shinozaki T, Yanagawa T, et al. Glucose metabolic analysis of musculoskeletal tumours using 18-fluorine-FDG PET as an aid to preoperative planning. J Bone Joint Surg Br 2000;82(5):760–767.

    Article  CAS  PubMed  Google Scholar 

  7. Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-D-glucose. Radiology 1992;182(1): 185–194.

    CAS  PubMed  Google Scholar 

  8. Schulte M, Brecht-Krauss D, Heymer B, et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur J Nucl Med 1999;26(6):599–605.

    Article  CAS  PubMed  Google Scholar 

  9. Lucas JD, O’Doherty MJ, Cronin BF, et al. Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 1999;86(4):550–556.

    Article  CAS  PubMed  Google Scholar 

  10. Kern KA, Brunetti A, Norton JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 1988;29(2):181–186.

    CAS  PubMed  Google Scholar 

  11. Lucas JD, O’Doherty MJ, Wong JC, et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg Br 1998;80(3):441–447.

    Article  CAS  PubMed  Google Scholar 

  12. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. APET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  13. Ferner RE, Lucas JD, O’Doherty MJ, et al. Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry 2000;68(3):353–357.

    Article  CAS  PubMed  Google Scholar 

  14. Adler LP, Blair HF, Williams RP, et al. Grading liposarcomas with PET using [18F]FDG. J Comput Assist Tomogr 1990;14(6):960–962.

    Article  CAS  PubMed  Google Scholar 

  15. Ioannidis JP, Lau J. 18F-FDG PET for the diagnosis and grading of softtissue sarcoma: a meta-analysis. J Nucl Med 2003;44(5):717–724.

    PubMed  Google Scholar 

  16. Nieweg OE, Pruim J, van Ginkel RJ, et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med 1996;37(2):257–261.

    CAS  PubMed  Google Scholar 

  17. Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 2004;30(1): 83–101.

    Article  CAS  PubMed  Google Scholar 

  18. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35(8):1308–1312.

    CAS  PubMed  Google Scholar 

  19. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-Dglucose. J Nucl Med 1978;19(10):1154–1161.

    CAS  PubMed  Google Scholar 

  20. Nelson CA, Wang JQ, Leav I, Crane PD. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2- deoxyglucose retention in murine tumor models. Nucl Med Biol 1996; 23(4):533–541.

    Article  CAS  PubMed  Google Scholar 

  21. Hustinx R, Smith RJ, Benard F, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26(10):1345–1348.

    Article  CAS  PubMed  Google Scholar 

  22. Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42(9):1412–1417.

    CAS  PubMed  Google Scholar 

  23. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43(7): 871–875.

    PubMed  Google Scholar 

  24. Demura Y, Tsuchida T, Ishizaki T, et al. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med 2003;44(4):540–548.

    CAS  PubMed  Google Scholar 

  25. Hain SF, O’Doherty MJ, Bingham J, Chinyama C, Smith MA. Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl Med Commun 2003;24(11):1139–1143.

    Article  CAS  PubMed  Google Scholar 

  26. Israel-Mardirosian N, Adler LP. Positron emission tomography of soft tissue sarcomas. Curr Opin Oncol 2003;15(4):327–330.

    Article  PubMed  Google Scholar 

  27. Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 2003;28(10): 815–820.

    Article  PubMed  Google Scholar 

  28. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13(6):1470–1477.

    CAS  PubMed  Google Scholar 

  29. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347(7):472–480.

    Article  CAS  PubMed  Google Scholar 

  30. Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 2004;45(1):17–21.

    CAS  PubMed  Google Scholar 

  31. Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging 2005;32(2):153–162.

    Article  CAS  PubMed  Google Scholar 

  32. Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and dualmodality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 2004;45(3): 357–365.

    CAS  PubMed  Google Scholar 

  33. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999;35(13):1773–1782.

    Article  CAS  PubMed  Google Scholar 

  34. Hain SF, O’Doherty MJ, Lucas JD, Smith MA. Fluorodeoxyglucose PET in the evaluation of amputations for soft tissue sarcoma. Nucl Med Commun 1999;20(9):845–848.

    Article  CAS  PubMed  Google Scholar 

  35. Kole AC, Nieweg OE, van Ginkel RJ, et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F]fluorodeoxyglucose. Ann Surg Oncol 1997;4(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  36. Eary JF, O’sullivan F, Powitan Y, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 2002;29(9):1149–1154.

    Article  CAS  PubMed  Google Scholar 

  37. Schuetze SM, Rubin BP, Vernon C, et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 2005;103(2):339–348.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hickeson, M.P. (2006). Soft Tissue Sarcomas. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics