Skip to main content

Neuroblastoma

  • Chapter
Pediatric PET Imaging
  • 983 Accesses

Abstract

Neuroblastoma is the most common extracranial solid tumor of childhood. It comprises 8% to 10% of all childhood neoplasms. Neuroblastoma is derived from primordial neural crest cells that normally differentiate into the sympathetic nervous system. The prevalence is about 1 case per 7000 newborns. There are about 600 new cases in the United States per year, and over 90% occur in children less than 6 years old. The median age is 22 months. Most primary tumors occur within the abdomen, especially the adrenal gland, although they may arise from any site along the course of the sympathetic nervous system. Other common sites are paraspinal ganglia of the posterior mediastinum and abdomen. About 60% of patients have widely metastatic osseous disease at presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodeur GM, Castleberry RP. Neuroblastoma. In: Pizzo PA, Poplack DG, eds. Principles and Practice of Pediatric Oncology, 3rd ed. Philadelphia: Lippincott-Raven, 1997:761–797.

    Google Scholar 

  2. Shimada H, Chatten J, Newton WA Jr, et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 1984;73:405.

    CAS  PubMed  Google Scholar 

  3. Brodeur GM, Pritchard J, Berthold F, et al. Revisions in the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11:1466.

    CAS  PubMed  Google Scholar 

  4. Sisson JC, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med 1981;305(1):12–17.

    Article  CAS  PubMed  Google Scholar 

  5. Treuner J, Feine U, Niethammer D, et al. Scintigraphic imaging of neuroblastoma with [131–I]iodobenzylguanidine. [Letter] Lancet 1984;1(8372): 333–334.

    Article  CAS  PubMed  Google Scholar 

  6. Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med 1999;43(3):217–223.

    CAS  PubMed  Google Scholar 

  7. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 1980;21(4): 349–353.

    CAS  PubMed  Google Scholar 

  8. Shulkin BL, Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med 1998;39(4):679–688.

    CAS  PubMed  Google Scholar 

  9. Ott FJ, Tait D, Flower MA, Babich JS, Lambrecht M. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–791.

    Article  CAS  PubMed  Google Scholar 

  10. Runkel F, Bruss M, Nothen MM, Stober G. Propping P, Bonisch H. Pharmacological properties of naturally occurring variants of the human norepinephrine transporter. Pharmacogenetics 2000;10(5):397–405.

    Article  CAS  PubMed  Google Scholar 

  11. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 1989;30(4):481–489.

    CAS  PubMed  Google Scholar 

  12. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2–[fluorine-18]-fluoro2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743–750.

    CAS  PubMed  Google Scholar 

  13. Kushner BH, Yeung HWD, Larson SM, Kramer K, Cheung N-K V. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19(14): 3397–3405.

    CAS  PubMed  Google Scholar 

  14. Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med 1996;37(1):16–21.

    CAS  PubMed  Google Scholar 

  15. Raffel DM, Wieland DM. Influence of vesicular storage and monoamine oxidase activity on [11C]phenylephrine kinetics: studies in isolated rat heart. J Nucl Med 1999;40(2):323–330.

    CAS  PubMed  Google Scholar 

  16. Shulkin BL, Wieland DM, Sisson JC. PET studies of pheochromocytoma with C-11 epinephrine. Radiology 1994;193:273.

    Google Scholar 

  17. Shulkin BL, Wieland DM, Castle VP, Hutchinson RJ, Sisson JC. Carbon- 11 epinephrine PET imaging of neuroblastoma. J Nucl Med 1999;40(5): 129.

    Google Scholar 

  18. Smets LA, Janssen M, Metwally E, Loesberg C. Extragranular storage of the neuron blocking agent meta-iodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochemical Pharmacology 1990;39(12):1959–1964.

    Article  CAS  PubMed  Google Scholar 

  19. Vaidyanathan G, Affleck DJ, Zalutsky MR. 4–[18F]fluoro-3-iodobenzyl guanidine, a potential MIBG analogue for positron emission tomography. J Med Chem 1994;37(21):3655–3662.

    Article  CAS  PubMed  Google Scholar 

  20. Berry CR, DeGrado TR, Nutter F, et al. Imaging of pheochromocytoma in 2 dogs using p-[18F] fluorobenzylguanidine. Vet Radiol Ultrasound 2002;43(2):183–186.

    Article  PubMed  Google Scholar 

  21. Ilias I, Yu J, Carrasquillo JA, et al. Superiority of 6–[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 2003;88(9):4083–4087.

    Article  CAS  PubMed  Google Scholar 

  22. Hoegerle S, Ghanem N, Altehoefer C, et al. Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 2002;222(2): 507–512.

    Article  PubMed  Google Scholar 

  23. Goodwill T, Shulkin BL, Schumacher K, Devooght J, Castle V. Metabolic characterization of neuroblastoma. J Nucl Med 2002;43(5):36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Shulkin, B.L. (2006). Neuroblastoma. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics