Skip to main content

Fas—More Than an Apoptosis Inducer

  • Chapter
Fas Signaling

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 329 Accesses

Abstract

Fas (Apo-1 or CD95) and its corresponding ligand FasL (CD95L) are representative members of the TNF receptor and TNF ligand family that have been implicated in a variety of apoptotic processes, involved in T-cell induced cytotoxicity, activation-induced cell death, immune privilege, tumor surveillance and angiogenesis. Although, studies on the FasL/Fas system mainly focused on its pro-apoptotic role, a couple of additional apoptosis-independent functions of Fas have been reported, including induction of proliferation in T-cells and fibroblasts, hepatocyte regeneration, chemokine production, DC maturation and neurite outgrowth. While the apoptotic signaling capacities of FasL and Fas were intensively studied and well understood, the molecular mechanisms of nonapoptotic Fas signaling are ill defined yet. This chapter will review our current understanding of nonapoptotic FasL/Fas functions and in particular address how the balance between apoptotic and nonapoptotic Fas signaling is regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanaka M, Suda T, Takahashi T et al. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J 1995; 14:1129–1135.

    PubMed  CAS  Google Scholar 

  2. Kayagaki N, Kawasaki A, Ebata T et al. Metalloproteinase-mediated release of human Fas ligand. J Exp Med 1995; 182:1777–1783.

    PubMed  CAS  Google Scholar 

  3. Suda T, Hashimoto H, Tanaka M et al. Membrane fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 1997; 186:2045–2050.

    PubMed  CAS  Google Scholar 

  4. Tanaka M, Itai T, Adachi M et al. Regulation of Fas ligand by shedding. Nat Med 1998; 4:31–36.

    PubMed  CAS  Google Scholar 

  5. Schneider P, Holler N, Bodmer JL et al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 1998; 187:1205–1213.

    PubMed  CAS  Google Scholar 

  6. Itoh N, Yonehara S, Ishii A et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66:233–243.

    PubMed  CAS  Google Scholar 

  7. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993; 268:10932–10937.

    PubMed  CAS  Google Scholar 

  8. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000; 103:273–282.

    PubMed  CAS  Google Scholar 

  9. Papoff G, Hausler P, Eramo A et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 1999; 274:38241–38250.

    PubMed  CAS  Google Scholar 

  10. Chan FK, Chun HJ, Zheng L et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000; 288:2351–2354.

    PubMed  CAS  Google Scholar 

  11. Siegel RM, Frederiksen JK, Zacharias DA et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288:2354–2357.

    PubMed  CAS  Google Scholar 

  12. Kischkel FC, Hellbardt S, Behrmann I et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14:5579–5588.

    PubMed  CAS  Google Scholar 

  13. Muzio M, Chinnaiyan AM, Kischkel FC et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 1996; 85:817–827.

    PubMed  CAS  Google Scholar 

  14. Chinnaiyan AM, O’Rourke K, Tewari M et al. A novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81:505–512.

    PubMed  CAS  Google Scholar 

  15. Boldin MP, Varfolomeev EE, Pancer Z et al. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995; 270:7795–7798.

    PubMed  CAS  Google Scholar 

  16. Donepudi M, Mac Sweeney A, Briand C et al. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003; 11:543–549.

    PubMed  CAS  Google Scholar 

  17. Boatright KM, Renatus M, Scott FL et al. A unified model for apical caspase activation. Mol Cell 2003; 11:529–541.

    PubMed  CAS  Google Scholar 

  18. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10:26–35.

    PubMed  CAS  Google Scholar 

  19. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Semin Immunol 2003; 15:185–193.

    PubMed  CAS  Google Scholar 

  20. Vaux DL, Silke J. Mammalian mitochondrial LAP binding proteins. Biochem Biophys Res Commun 2003; 304:499–504.

    PubMed  CAS  Google Scholar 

  21. Shi Y. Apoptosome: The cellular engine for the activation of caspase-9. Structure (Camb) 2002; 10:285–288.

    PubMed  CAS  Google Scholar 

  22. Holler N, Zaru R, Micheau O et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1:489–495.

    PubMed  CAS  Google Scholar 

  23. Matsumura H, Shimizu Y, Ohsawa Y et al. Necrotic death pathway in Fas receptor signaling. J Cell Biol 2000; 151:1247–1256.

    PubMed  CAS  Google Scholar 

  24. Vercammen D, Brouckaert G, Denecker G et al. Dual signaling of the Fas receptor: Initiation of both apoptotic and necrotic cell death pathways. J Exp Med 1998; 188:919–930.

    PubMed  CAS  Google Scholar 

  25. Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 2001; 15:2321–2342.

    PubMed  CAS  Google Scholar 

  26. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2:725–734.

    PubMed  CAS  Google Scholar 

  27. Huxford T, Huang DB, Malek S et al. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95:759–770.

    PubMed  CAS  Google Scholar 

  28. Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell 1998; 95:749–758.

    PubMed  CAS  Google Scholar 

  29. Brown K, Gerstberger S, Carlson L et al. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 1995; 267:1485–1488.

    PubMed  CAS  Google Scholar 

  30. Brockman JA, Scherer DC, McKinsey TA et al. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 1995; 15:2809–2818.

    PubMed  CAS  Google Scholar 

  31. DiDonato J, Mercurio F, Rosette C et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996; 16:1295–1304.

    PubMed  CAS  Google Scholar 

  32. Yaron A, Hatzubai A, Davis M et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 1998; 396:590–594.

    PubMed  CAS  Google Scholar 

  33. Baldi L, Brown K, Franzoso G et al. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha. J Biol Chem 1996; 271:376–379.

    PubMed  CAS  Google Scholar 

  34. Scherer DC, Brockman JA, Chen Z et al. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA 1995; 92:11259–11263.

    PubMed  CAS  Google Scholar 

  35. Rice NR, MacKichan ML, Israel A. The precursor of NF-kappa B p50 has I kappa B-like functions. Cell 1992; 71:243–253.

    PubMed  CAS  Google Scholar 

  36. Naumann M, Wulczyn FG, Scheidereit C. The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B. EMBO J 1993; 12:213–222.

    PubMed  CAS  Google Scholar 

  37. Mercurio F, DiDonato JA, Rosette C et al. p105 and p98 precursor proteins play an active role in NF-kappa B-mediated signal transduction. Genes Dev 1993; 7:705–718.

    PubMed  CAS  Google Scholar 

  38. Dobrzanski P, Ryseck RP, Bravo R. Specific inhibition of RelB/p52 transcriptional activity by the C-terminal domain of p100. Oncogene 1995; 10:1003–1007.

    PubMed  CAS  Google Scholar 

  39. Heusch M, Lin L, Geleziunas R et al. The generation of nfkb2 p52: Mechanism and efficiency. Oncogene 1999; 18:6201–6208.

    PubMed  CAS  Google Scholar 

  40. Lin L, Ghosh S. A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol 1996; 16:2248–2254.

    PubMed  CAS  Google Scholar 

  41. Orian A, Schwartz AL, Israel A et al. Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105: Roles of the glycine-rich region and a downstream ubiquitination domain. Mol Cell Biol 1999; 19:3664–3673.

    PubMed  CAS  Google Scholar 

  42. Rothwarf DM, Karin M. The NF-kappa B activation pathway: A paradigm in information transfer from membrane to nucleus. Sci STKE 1999; 1999:RE1.

    Google Scholar 

  43. Sigala JL, Bottero V, Young DB et al. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 2004; 304:1963–1967.

    Google Scholar 

  44. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002; 9:401–410.

    PubMed  CAS  Google Scholar 

  45. Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: Scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001; 13:389–400.

    PubMed  CAS  Google Scholar 

  46. Lee FS, Peters RT, Dang LC et al. MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc Natl Acad Sci USA 1998; 95:9319–9324.

    PubMed  CAS  Google Scholar 

  47. Nakano H, Shindo M, Sakon S et al. Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci USA 1998; 95:3537–3542.

    PubMed  CAS  Google Scholar 

  48. Zhao Q, Lee FS. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. J Biol Chem 1999; 274:8355–8358.

    PubMed  CAS  Google Scholar 

  49. Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398:252–256.

    PubMed  CAS  Google Scholar 

  50. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999; 19:4798–4805.

    PubMed  CAS  Google Scholar 

  51. Madrid LV, Wang CY, Guttridge DC et al. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000; 20:1626–1638.

    PubMed  CAS  Google Scholar 

  52. Leitges M, Sanz L, Martin P et al. Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell 2001; 8:771–7808.

    PubMed  CAS  Google Scholar 

  53. Duran A, Diaz-Meco MT, Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 2003; 22:3910–3918.

    PubMed  CAS  Google Scholar 

  54. Zhong H, SuYang H, Erdjument-Bromage H et al. Transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997; 89:413–424.

    PubMed  CAS  Google Scholar 

  55. Wang D, Westerheide SD, Hanson JL et al. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000; 275:32592–32597.

    PubMed  CAS  Google Scholar 

  56. Sakurai H, Chiba H, Miyoshi H et al. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274:30353–30356.

    PubMed  CAS  Google Scholar 

  57. Rudolph D, Yeh WC, Wakeham A et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 2000; 14:854–862.

    PubMed  CAS  Google Scholar 

  58. Schmidt-Supprian M, Bloch W, Courtois G et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 2000; 5:981–992.

    PubMed  CAS  Google Scholar 

  59. Makris C, Godfrey VL, Krahn-Senftleben G et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 2000; 5:969–979.

    PubMed  CAS  Google Scholar 

  60. Salmeron A, Janzen J, Soneji Y et al. Direct phosphorylation of NF-kappaB1 pl05 by the IkappaB kinase complex on serine 927 is essential for signal-induced pl05 proteolysis. J Biol Chem 2001; 276:22215–22222.

    PubMed  CAS  Google Scholar 

  61. Yamaoka S, Courtois G, Bessia C et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998; 93:1231–1240.

    PubMed  CAS  Google Scholar 

  62. Harhaj EW, Good L, Xiao G et al. Somatic mutagenesis studies of NF-kappa B signaling in human T cells: Evidence for an essential role of IKK gamma in NF-kappa B activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene 2000; 19:1448–1456.

    PubMed  CAS  Google Scholar 

  63. Tanaka M, Fuentes ME, Yamaguchi K et al. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 1999; 10:421–429.

    PubMed  CAS  Google Scholar 

  64. Li Q, Lu Q, Hwang JY et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999; 13:1322–1328.

    PubMed  CAS  Google Scholar 

  65. Takeda K, Takeuchi O, Tsujimura T et al. Limb and skin abnormalities in mice lacking IKKalpha. Science 1999; 284:313–316.

    PubMed  CAS  Google Scholar 

  66. Hu Y, Baud V, Delhase M et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284:316–320.

    PubMed  CAS  Google Scholar 

  67. Li Q, Van Antwerp D, Mercurio F et al. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 1999; 284:321–325.

    PubMed  CAS  Google Scholar 

  68. Yamamoto Y, Verma UN, Prajapati S et al. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 2003; 423:655–659.

    PubMed  CAS  Google Scholar 

  69. Anest V, Hanson JL, Cogswell PC et al. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003; 423:659–663.

    PubMed  CAS  Google Scholar 

  70. Dejardin E, Droin NM, Delhase M et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17:525–535.

    PubMed  CAS  Google Scholar 

  71. Claudio E, Brown K, Park S et al. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 2002; 3:958–965.

    PubMed  CAS  Google Scholar 

  72. Kayagaki N, Yan M, Seshasayee D et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002; 17:515–524.

    PubMed  CAS  Google Scholar 

  73. Coope HJ, Atkinson PG, Huhse B et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002; 21:5375–5385.

    PubMed  CAS  Google Scholar 

  74. Saitoh T, Nakayama M, Nakano H et al. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003; 278:36005–36012.

    PubMed  CAS  Google Scholar 

  75. Xiao G, Cvijic ME, Fong A et al. Retroviral oncoprotein tax induces processing of NF-kappaB2/p100 in T cells: Evidence for the involvement of IKKalpha. EMBO J 2001; 20:6805–6815.

    PubMed  CAS  Google Scholar 

  76. Senftleben U, Cao Y, Xiao G et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 2001; 293:1495–1499.

    PubMed  CAS  Google Scholar 

  77. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001; 7:401–409.

    PubMed  CAS  Google Scholar 

  78. Fong A, Sun SC. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 2002; 277:22111–22114.

    PubMed  CAS  Google Scholar 

  79. Delhase M, Hayakawa M, Chen Y et al. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999; 284:309–313.

    PubMed  CAS  Google Scholar 

  80. Arenzana-Seisdedos F, Thompson J, Rodriguez MS et al. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 1995; 15:2689–2696.

    PubMed  CAS  Google Scholar 

  81. Arenzana-Seisdedos F, Turpin P, Rodriguez M et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci 1997; 110:369–378.

    PubMed  CAS  Google Scholar 

  82. Sachdev S, Hoffmann A, Hannink M. Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: The IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol Cell Biol 1998; 18:2524–2534.

    PubMed  CAS  Google Scholar 

  83. Sachdev S, Bagchi S, Zhang DD et al. Nuclear import of IkappaBalpha is accomplished by a ran-independent transport pathway. Mol Cell Biol 2000; 20:1571–1582.

    PubMed  CAS  Google Scholar 

  84. Suyang H, Phillips R, Douglas I et al. Role of unphosphorylated, newly synthesized I kappa B beta in persistent activation of NF-kappa B. Mol Cell Biol 1996; 16:5444–5449.

    PubMed  CAS  Google Scholar 

  85. DeLuca C, Petropoulos L, Zmeureanu D et al. Nuclear IkappaBbeta maintains persistent NF-kappaB activation in HIV-1-infected myeloid cells. J Biol Chem 1999; 274:13010–13016.

    PubMed  CAS  Google Scholar 

  86. He KL, Ting AT. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol 2002; 22:6034–6045.

    PubMed  CAS  Google Scholar 

  87. Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004.

    Google Scholar 

  88. Kobayashi K, Hernandez LD, Galan JE et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110:191–202.

    PubMed  CAS  Google Scholar 

  89. Janssens S, Burns K, Tschopp J et al. Regulation of interleukin-1-and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 2002; 12:467–471.

    PubMed  CAS  Google Scholar 

  90. Beg AA, Sha WC, Bronson RT et al. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376:167–170.

    PubMed  CAS  Google Scholar 

  91. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274:782–784.

    PubMed  CAS  Google Scholar 

  92. Van Antwerp DJ, Martin SJ, Kafri T et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274:787–789.

    PubMed  Google Scholar 

  93. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001; 107:241–246.

    PubMed  CAS  Google Scholar 

  94. Wang CY, Mayo MW, Korneluk RG et al. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and C-IAP2 to suppress caspase-8 activation. Science 1998; 281:1680–1683.

    PubMed  CAS  Google Scholar 

  95. Chu ZL, McKinsey TA, Liu L et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis C-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 1997; 94:10057–10062.

    PubMed  CAS  Google Scholar 

  96. Stehlik C, de Martin R, Kumabashiri I et al. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998; 188:211–216.

    PubMed  CAS  Google Scholar 

  97. Schwenzer R, Siemienski K, Liptay S et al. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 1999; 274:19368–19374.

    PubMed  CAS  Google Scholar 

  98. Kreuz S, Siegmund D, Scheurich P et al. NF-kappaB inducers upregulate cFLIP, a cycloheximidesensitive inhibitor of death receptor signaling. Mol Cell Biol 2001; 21:3964–3973.

    PubMed  CAS  Google Scholar 

  99. Micheau O, Lens S, Gaide O et al. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 2001; 21:5299–5305.

    PubMed  CAS  Google Scholar 

  100. You Z, Ouyang H, Lopatin D et al. Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factor-mediated apoptosis by inhibiting caspase-8 activity. J Biol Chem 2001; 276:26398–26404.

    PubMed  CAS  Google Scholar 

  101. Zong WX, Edelstein LC, Chen C et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13:382–387.

    PubMed  CAS  Google Scholar 

  102. Wang CY, Guttridge DC, Mayo MW et al. NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999; 19:5923–5929.

    PubMed  CAS  Google Scholar 

  103. Lee HH, Dadgostar H, Cheng Q et al. NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 1999; 96:9136–9141.

    PubMed  CAS  Google Scholar 

  104. Chen C, Edelstein LC, Gelinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 2000; 20:2687–2695.

    PubMed  Google Scholar 

  105. Bernard D, Quatannens B, Vandenbunder B et al. Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 2001; 276:27322–27328.

    PubMed  CAS  Google Scholar 

  106. Lin Y, Devin A, Rodriguez Y et al. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999; 13:2514–2526.

    PubMed  CAS  Google Scholar 

  107. Martinon F, Holler N, Richard C et al. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000; 468:134–136.

    PubMed  CAS  Google Scholar 

  108. Irmler M, Steiner V, Ruegg C et al. Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis. FEBS Lett 2000; 468:129–133.

    PubMed  CAS  Google Scholar 

  109. Barkett M, Xue D, Horvitz HR et al. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 1997; 272:29419–29422.

    PubMed  CAS  Google Scholar 

  110. Tang G, Yang J, Minemoto Y et al. Blocking caspase-3-mediated proteolysis of IKKbeta suppresses TNF-alpha-induced apoptosis. Mol Cell 2001; 8:1005–1016.

    PubMed  CAS  Google Scholar 

  111. Bachelder RE, Ribick MJ, Marchetti A et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 1999; 147:1063–1072.

    PubMed  CAS  Google Scholar 

  112. Hu WH, Johnson H, Shu HB. Activation of NF-kappaB by FADD, casper, and caspase-8. J Biol Chem 2000; 275:10838–10844.

    PubMed  CAS  Google Scholar 

  113. Arnold R, Liou J, Drexler HC et al. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFkappaB into an inhibitor of NFkappaB. J Biol Chem 2001; 276:14675–14684.

    PubMed  CAS  Google Scholar 

  114. Ravi R, Bedi A, Fuchs EJ. CD95 (Fas)-induced caspase-mediated proteolysis of NF-kappaB. Cancer Res 1998; 58:882–886.

    PubMed  CAS  Google Scholar 

  115. Levkau B, Scatena M, Giachelli CM et al. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kappa B loop. Nat Cell Biol 1999; 1:227–233.

    PubMed  CAS  Google Scholar 

  116. Wajant H, Haas E, Schwenzer R et al. Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 2000; 275:24357–2436611.

    PubMed  CAS  Google Scholar 

  117. Krippner-Heidenreich A, Tubing F, Bryde S et al. Control of receptor-induced signaling complex formation by the kinetics of ligand/receptor interaction. J Biol Chem 2002; 277:44155–44163.

    PubMed  CAS  Google Scholar 

  118. Chaudhary PM, Eby MT, Jasmin A et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 2000; 19:4451–4460.

    PubMed  CAS  Google Scholar 

  119. Kreuz S, Siegmund D, Rumpf JJ et al. NFkappa B activation by Fas is mediated through FADD, Caspase-8 and RIP and is inhibited by FLIP. J Cell Biology 2004; 166:369–380. in press.

    CAS  Google Scholar 

  120. Ma Y, Liu H, Tu-Rapp H et al. Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 2004; 5:380–387.

    PubMed  CAS  Google Scholar 

  121. Bannerman DD, Tupper JC, Kelly JD et al. The Fas-associated death domain protein suppresses activation of NF-kappa B by LPS and IL-1 beta. J Clin Invest 2002; 109:419–425.

    PubMed  CAS  Google Scholar 

  122. Stanger BZ, Leder P, Lee TH et al. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81:513–523.

    PubMed  CAS  Google Scholar 

  123. Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996; 15:6189–6196.

    PubMed  CAS  Google Scholar 

  124. Kelliher MA, Grimm S, Ishida Y et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8:297–303.

    PubMed  CAS  Google Scholar 

  125. Lin Y, Devin A, Cook A et al. The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol 2000; 20:6638–6645.

    PubMed  CAS  Google Scholar 

  126. Leverkus M, Neumann M, Mengling T et al. Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 2000; 60:553–559.

    PubMed  CAS  Google Scholar 

  127. Fulda S, Meyer E, Debatin KM. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Res 2000; 60:3947–3956.

    PubMed  CAS  Google Scholar 

  128. Chang DW, Xing Z, Pan Y et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002; 21:3704–3714.

    PubMed  CAS  Google Scholar 

  129. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10:45–65.

    PubMed  CAS  Google Scholar 

  130. Li Z, Zhang J, Chen D et al. Casper/c-FLIP is physically and functionally associated with NF-kappaB1 p105. Biochem Biophys Res Commun 2003; 309:980–985.

    PubMed  CAS  Google Scholar 

  131. Grambihler A, Higuchi H, Bronk SF et al. cFLIP-L inhibits p38 MAPK activation: An additional anti-apoptotic mechanism in bile acid-mediated apoptosis. J Biol Chem 2003; 278:26831–26837.

    PubMed  CAS  Google Scholar 

  132. Fang LW, Tai TS, Yu WN et al. Phosphatidylinositide 3-kinase priming couples c-FLIP to T cell activation. J Biol Chem 2004; 279:13–18.

    PubMed  CAS  Google Scholar 

  133. Lens SM, Kataoka T, Former KA et al. The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol Cell Biol 2002; 22:5419–5433.

    PubMed  CAS  Google Scholar 

  134. Tai TS, Fang LW, Lai MZ et al. c-FLICE inhibitory protein expression inhibits T-cell activation. Cell Death Differ 2004; 11:69–79.

    PubMed  CAS  Google Scholar 

  135. Wu W, Rinaldi L, Former KA et al. Cellular FLIP long form-transgenic mice manifest a Th2 cytokine bias and enhanced allergic airway inflammation. J Immunol 2004; 172:4724–4732.

    PubMed  CAS  Google Scholar 

  136. Liu L, Eby MT, Rathore N et al. The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J Biol Chem 2002; 277:13745–13751.

    PubMed  CAS  Google Scholar 

  137. Sun Q, Matta H, Chaudhary PM. The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood 2003; 101:1956–1961.

    PubMed  CAS  Google Scholar 

  138. Field N, Low W, Daniels M et al. KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 2003; 116:3721–3728.

    PubMed  CAS  Google Scholar 

  139. Sun Q, Zachariah S, Chaudhary PM. The human herpes virus 8-encoded viral FLICE-inhibitory protein induces cellular transformation via NF-kappaB activation. J Biol Chem 2003; 278:52437–52445.

    PubMed  CAS  Google Scholar 

  140. Matta H, Sun Q, Moses G et al. Molecular genetic analysis of human herpes virus 8-encoded viral FLICE inhibitory protein-induced NF-kappaB activation. J Biol Chem 2003; 278:52406–52411.

    PubMed  CAS  Google Scholar 

  141. Hopkins-Donaldson S, Bodmer JL, Bourloud KB et al. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000; 60:4315–4319.

    PubMed  CAS  Google Scholar 

  142. Teitz T, Wei T, Valentine MB et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6:529–535.

    PubMed  CAS  Google Scholar 

  143. Takita J, Yang HW, Bessho F et al. Absent or reduced expression of the caspase 8 gene occurs frequently in neuroblastoma, but not commonly in Ewing sarcoma or rhabdomyosarcoma. Med Pediatr Oncol 2000; 35:541–543.

    PubMed  CAS  Google Scholar 

  144. Eggert A, Grotzer MA, Zuzak TJ et al. Resistance to TRAIL-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Med Pediatr Oncol 2000; 35:603–607.

    PubMed  CAS  Google Scholar 

  145. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103:239–252.

    PubMed  CAS  Google Scholar 

  146. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4:131–136.

    Google Scholar 

  147. Yang DD, Kuan CY, Whitmarsh AJ et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997; 389:865–870.

    PubMed  CAS  Google Scholar 

  148. Hilberg F, Aguzzi A, Howells N et al. c-jun is essential for normal mouse development and hepatogenesis. Nature 1993; 365:179–181.

    PubMed  CAS  Google Scholar 

  149. Fuchs SY, Adler V, Pincus MR et al. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 1998; 95:10541–10546.

    PubMed  CAS  Google Scholar 

  150. Fuchs SY, Adler V, Buschmann T et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 1998; 12:2658–2663.

    PubMed  CAS  Google Scholar 

  151. Noguchi K, Kitanaka C, Yamana H et al. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 1999; 274:32580–32587.

    PubMed  CAS  Google Scholar 

  152. Whitfield J, Neame SJ, Paquet L et al. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 2001; 29:629–643.

    PubMed  CAS  Google Scholar 

  153. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100:2432–2437.

    PubMed  CAS  Google Scholar 

  154. Putcha GV, Le S, Frank S et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 2003; 38:899–914.

    PubMed  CAS  Google Scholar 

  155. Faris M, Latinis KM, Kempiak SJ et al. Stress-induced Fas ligand expression in T cells is mediated through a MEK kinase 1-regulated response element in the Fas ligand promoter. Mol Cell Biol 1998; 18:5414–5424.

    PubMed  CAS  Google Scholar 

  156. Kasibhatla S, Brunner T, Genestier L et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1998; 1:543–551.

    PubMed  CAS  Google Scholar 

  157. Tournier C, Hess P, Yang DD et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870–874.

    PubMed  CAS  Google Scholar 

  158. De Smaele E, Zazzeroni F, Papa S et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 2001; 414:308–313.

    PubMed  Google Scholar 

  159. Tang G, Minemoto Y, Dibling B et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001; 414:313–317.

    PubMed  CAS  Google Scholar 

  160. Cardone MH, Salvesen GS, Widmann C et al. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 1997; 90:315–323.

    PubMed  CAS  Google Scholar 

  161. Widmann C, Johnson NL, Gardner AM et al. Potentiation of apoptosis by low dose stress stimuli in cells expressing activated MEK kinase 1. Oncogene 1997; 15:2439–2447.

    PubMed  CAS  Google Scholar 

  162. Widmann C, Gerwins P, Johnson NL et al. MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol 1998; 18:2416–2429.

    PubMed  CAS  Google Scholar 

  163. Low W, Smith A, Ashworth A et al. JNK activation is not required for Fas-mediated apoptosis. Oncogene 1999; 18:3737–3741.

    PubMed  CAS  Google Scholar 

  164. Wilson DJ, Alessandrini A, Budd RC. MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis. Cell Immunol 1999; 194:67–77.

    PubMed  CAS  Google Scholar 

  165. Juo P, Kuo CJ, Reynolds SE et al. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 1997; 17:24–35.

    PubMed  CAS  Google Scholar 

  166. Lenczowski JM, Dominguez L, Eder AM et al. Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis. Mol Cell Biol 1997; 17:170–181.

    PubMed  CAS  Google Scholar 

  167. Rochat-Steiner V, Becker K, Micheau O et al. FIST/HIPK3: A Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med 2000; 192:1165–1174.

    PubMed  CAS  Google Scholar 

  168. Sabapathy K, Hu Y, Kallunki T et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 1999; 9:116–125.

    PubMed  CAS  Google Scholar 

  169. Rudel T, Zenke FT, Chuang TH et al. p21-activated kinase (PAK) is required for Fas-induced JNK activation in Jurkat cells. J Immunol 1998; 160:7–11.

    PubMed  CAS  Google Scholar 

  170. Toyoshima F, Moriguchi T, Nishida E. Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases. J Cell Biol 1997; 139:1005–1015.

    PubMed  CAS  Google Scholar 

  171. Cahill MA, Peter ME, Kischkel FC et al. CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. Oncogene 1996; 13:2087–2096.

    PubMed  CAS  Google Scholar 

  172. Herr I, Wilhelm D, Meyer E et al. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ 1999; 6:130–135.

    PubMed  CAS  Google Scholar 

  173. Kennedy NJ, Kataoka T, Tschopp J et al. Caspase activation is required for T cell proliferation. J Exp Med 1999; 190:1891–1896.

    PubMed  CAS  Google Scholar 

  174. Yang X, Khosravi-Far R, Chang HY et al. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 89:1067–1076.

    PubMed  CAS  Google Scholar 

  175. Chang HY, Nishitoh H, Yang X et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 1998; 281:1860–1863.

    PubMed  CAS  Google Scholar 

  176. Li H, Leo C, Zhu J et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20:1784–1796.

    PubMed  CAS  Google Scholar 

  177. Torii S, Egan DA, Evans RA et al. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 1999; 18:6037–6049.

    PubMed  CAS  Google Scholar 

  178. Hollenbach AD, Sublett JE, McPherson CJ et al. The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 1999; 18:3702–3711.

    PubMed  CAS  Google Scholar 

  179. Zhong S, Salomoni P, Ronchetti S et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 2000; 191:631–640.

    PubMed  CAS  Google Scholar 

  180. Pluta AF, Earnshaw WC, Goldberg IG. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death. J Cell Sci 1998; 111:2029–2041.

    PubMed  CAS  Google Scholar 

  181. Chang HY, Yang X, Baltimore D. Dissecting Fas signaling with an altered-specificity death-domain mutant: Requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci USA 1999; 96:1252–1256.

    PubMed  CAS  Google Scholar 

  182. Charette SJ, Lavoie JN, Lambert H et al. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20:7602–7612.

    PubMed  CAS  Google Scholar 

  183. Ichijo H, Nishida E, Irie K et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275:90–94.

    PubMed  CAS  Google Scholar 

  184. Hatai T, Matsuzawa A, Inoshita S et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 2000; 275:26576–26581.

    PubMed  CAS  Google Scholar 

  185. Wollert KC, Heineke J, Westermann J et al. The cardiac Fas (APO-1/CD95) Receptor/Fas ligand system: Relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 2000; 101:1172–1178.

    PubMed  CAS  Google Scholar 

  186. Badorff C, Ruetten H, Mueller S et al. Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest 2002; 109:373–381.

    PubMed  CAS  Google Scholar 

  187. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999; 341:1276–1283.

    PubMed  CAS  Google Scholar 

  188. Choukroun G, Hajjar R, Fry S et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J Clin Invest 1999; 104:391–398.

    PubMed  CAS  Google Scholar 

  189. Esposito G, Prasad SV, Rapacciuolo A et al. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 2001; 103:1453–1458.

    PubMed  CAS  Google Scholar 

  190. Cross DA, Alessi DR, Cohen P et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378:785–789.

    PubMed  CAS  Google Scholar 

  191. Haq S, Choukroun G, Kang ZB et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 2000; 151:117–130.

    PubMed  CAS  Google Scholar 

  192. Alderson MR, Armitage RJ, Maraskovsky E et al. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993; 178:2231–2235.

    PubMed  CAS  Google Scholar 

  193. Kurasawa K, Hashimoto Y, Kasai M et al. The fas antigen is involved in thymic T-cell development as a costimulatory molecule, but not in the deletion of neglected thymocytes. J Allergy Clin Immunol 2000; 106:19–31.

    Google Scholar 

  194. Aggarwal BB, Singh S, LaPushin R et al. Fas antigen signals proliferation of normal human diploid fibroblast and its mechanism is different from tumor necrosis factor receptor. FEBS Lett 1995; 364:5–8.

    PubMed  CAS  Google Scholar 

  195. Freiberg RA, Spencer DM, Choate KA et al. Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J Invest Dermatol 1997; 108:215–219.

    PubMed  CAS  Google Scholar 

  196. Jelaska A, Korn JH. Anti-Fas induces apoptosis and proliferation in human dermal fibroblasts: Differences between foreskin and adult fibroblasts. J Cell Physiol 1998; 175:19–29.

    PubMed  CAS  Google Scholar 

  197. Ahn JH, Park SM, Cho HS et al. Nonapoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-kappaB-dependent gene expression. J Biol Chem 2001; 276:47100–47106.

    PubMed  CAS  Google Scholar 

  198. Alam A, Cohen LY, Aouad S et al. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999; 190:1879–1890.

    PubMed  CAS  Google Scholar 

  199. Miossec C, Dutilleul V, Fassy F et al. Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem 1997; 272:13459–13462.

    PubMed  CAS  Google Scholar 

  200. Wilhelm S, Wagner H, Hacker G. Activation of caspase-3-like enzymes in nonapoptotic T cells. Eur J Immunol 1998; 28:891–900.

    PubMed  CAS  Google Scholar 

  201. Pinkoski MJ, Green DR. Fas ligand, death gene. Cell Death Differ 1999; 6:1174–1181.

    PubMed  CAS  Google Scholar 

  202. Newton K, Harris AW, Bath ML et al. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 1998; 17:706–718.

    PubMed  CAS  Google Scholar 

  203. Walsh CM, Wen BG, Chinnaiyan AM et al. A role for FADD in T cell activation and development. Immunity 1998; 8:439–449.

    PubMed  CAS  Google Scholar 

  204. Zhang J, Cado D, Chen A et al. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mortl. Nature 1998; 392:296–300.

    PubMed  CAS  Google Scholar 

  205. Watanabe-Fukunaga R, Brannan CI, Copeland NG et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356:314–317.

    PubMed  CAS  Google Scholar 

  206. Ramsdell F, Seaman MS, Miller RE et al. gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol 1994; 24:928–933.

    PubMed  CAS  Google Scholar 

  207. Hackam AS, Yassa AS, Singaraja R et al. Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 2000; 275:41299–41308.

    PubMed  CAS  Google Scholar 

  208. Gervais FG, Singaraja R, Xanthoudakis S et al. Recruitment and activation of caspase-8 by the huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 2002; 4:95–105.

    PubMed  CAS  Google Scholar 

  209. Breckenridge DG, Nguyen M, Kuppig S et al. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc Natl Acad Sci USA 2002; 99:4331–4336.

    PubMed  CAS  Google Scholar 

  210. Petit F, Corbeil J, Lelievre JD et al. Role of CD95-activated caspase-1 processing of IL-1beta in TCR-mediated proliferation of HIV-infected CD4(+) T cells. Eur J Immunol 2001; 31:3513–3524.

    PubMed  CAS  Google Scholar 

  211. Desbarats J, Newell MK. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 2000; 6:920–923.

    PubMed  CAS  Google Scholar 

  212. Suzuki I, Fink PJ. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med 1998; 187:123–128.

    PubMed  CAS  Google Scholar 

  213. Suzuki I, Martin S, Boursalian TE et al. Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J Immunol 2000; 165:5537–5543.

    PubMed  CAS  Google Scholar 

  214. Suzuki I, Fink PJ. The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci USA 2000; 97:1707–1712.

    PubMed  CAS  Google Scholar 

  215. Desbarats J, Duke RC, Newell MK. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nat Med 1998; 4:1377–1382.

    PubMed  CAS  Google Scholar 

  216. Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001; 2:917–924.

    PubMed  CAS  Google Scholar 

  217. Lau HT, Yu M, Fontana A et al. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 1996; 273:109–112.

    PubMed  CAS  Google Scholar 

  218. Kang SM, Schneider DB, Lin Z et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3:738–743.

    PubMed  CAS  Google Scholar 

  219. Allison J, Georgiou HM, Strasser A et al. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 1997; 94:3943–3947.

    PubMed  CAS  Google Scholar 

  220. Seino K, Kayagaki N, Okumura K et al. Antitumor effect of locally produced CD95 ligand. Nat Med 1997; 3:165–170.

    PubMed  CAS  Google Scholar 

  221. Arai H, Gordon D, Nabel EG et al. Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci USA 1997; 94:13862–13867.

    PubMed  CAS  Google Scholar 

  222. Shimizu M, Fontana A, Takeda Y et al. Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells. J Immunol 1999; 162:7350–7357.

    PubMed  CAS  Google Scholar 

  223. Takeuchi T, Ueki T, Nishimatsu H et al. Accelerated rejection of Fas ligand-expressing heart grafts. J Immunol 1999; 162:518–522.

    PubMed  CAS  Google Scholar 

  224. Seino K, Iwabuchi K, Kayagaki N et al. Chemotactic activity of soluble Fas ligand against phagocytes. J Immunol 1998; 161:4484–4488.

    PubMed  CAS  Google Scholar 

  225. Ottonello L, Tortolina G, Amelotti M et al. Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol 1999; 162:3601–3606.

    PubMed  CAS  Google Scholar 

  226. Waku T, Fujiwara T, Shao J et al. Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. J Immunol 2000; 165:5884–5890.

    PubMed  CAS  Google Scholar 

  227. Roth W, Isenmann S, Nakamura M et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001; 61:2759–2765.

    PubMed  CAS  Google Scholar 

  228. Behrens CK, Igney FH, Arnold B et al. CD95 ligand-expressing tumors are rejected in anti-tumor TCR transgenic perforin knockout mice. J Immunol 2001; 166:3240–3247.

    PubMed  CAS  Google Scholar 

  229. Hohlbaum AM, Moe S, Marshak-Rothstein A. Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 2000; 191:1209–1220.

    PubMed  CAS  Google Scholar 

  230. Choi C, Benveniste EN. Fas ligand/Fas system in the brain: Regulator of immune and apoptotic responses. Brain Res Brain Res Rev 2004; 44:65–81.

    PubMed  CAS  Google Scholar 

  231. Shinohara H, Yagita H, Ikawa Y et al. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 2000; 60:1766–1772.

    PubMed  CAS  Google Scholar 

  232. Desbarats J, Birge RB, Mimouni-Rongy M et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 2003; 5:118–125.

    PubMed  CAS  Google Scholar 

  233. Kataoka T, Budd RC, Holler N et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 2000; 10:640–648.

    PubMed  CAS  Google Scholar 

  234. Rescigno M, Piguet V, Valzasina B et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: A new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192:1661–1668.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wajant, H. (2006). Fas—More Than an Apoptosis Inducer. In: Fas Signaling. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-34573-6_6

Download citation

Publish with us

Policies and ethics