Skip to main content

On the control of an evolutionary equilibrium in micromagnetics

  • Chapter
Optimization with Multivalued Mappings

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 2))

Summary

Optimal control of magnetization in a ferromagnet is formulated as a mathematical program with evolutionary equilibrium constraints. To this purpose, we construct an evolutionary infinite-dimensional model which is discretized both in the space as well as in time variables. The evolutionary nature of this equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute subgradients of the composite objective, are derived using the generalized differential calculus of B. Mordukhovich. We solve two test examples and discuss numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J._P. Aubin and H. Frankowska: Set-Valued Analysis, Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  2. W._F. Brown, Jr.: Magnetostatic principles in ferromagnetism, Springer, New York, 1966.

    MATH  Google Scholar 

  3. S. Dempe: Foundations of Bilevel Programming, Kluwer Acad. Publ., Dordrecht-Boston-London, 2002.

    MATH  Google Scholar 

  4. A. DeSimone: Energy minimizers for large ferromagnetic bodies, Arch. Rat. Mech. Anal. 125(1993), 99–143.

    Article  MathSciNet  Google Scholar 

  5. A. DeSimone and R. D. James: A constrained theory of magnetoelasticity, J. Mech. Phys. Solids 50(2002), 283–320.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Henrion, A. Jourani and J. Outrata: On the Calmness of a Class of Multifunctions, SIAM Journal on Optimization 13(2002)2, 603–618.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Hubert and R. Schäffer: Magnetic Domains, Springer, Berlin, 1998.

    Google Scholar 

  8. R._D. James and D. Kinderlehrer: Frustration in ferromagnetic materials, Continuum Mech. Thermodyn. 2(1990), 215–239.

    Article  MathSciNet  Google Scholar 

  9. M. Kočvara, A. Mielke and T. Roubíček: Rate-independent approach to the delamination problem, SFB 404 “Mehrfeldprobleme in der Kontinuumsmechanik”, Universität Stuttgart, Preprint 2003/29, 2003 (To appear in Mathematics and Mechanics of Solids).

    Google Scholar 

  10. M. Kočvara and J. V. Outrata: On the modeling and control of delamination processes, In: J. Cagnol and J.-P. Zolesion (eds.): Control and Boundary Analysis, Marcel Dekker, New York, 2004, 171–190.

    Google Scholar 

  11. M. Kočvara and J. V. Outrata: Optimization Problems with Equilibrium Constraints and their Numerical Solution, Mathematical Programming B 101(2004), 119–150.

    MATH  Google Scholar 

  12. M. Kočvara and M. Stingl: PENNON-A Code for Convex Nonlinear and Semidefinite Programming, Optimization Methods and Software 18(2003), 317–333.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Kružík: Maximum principle based algorithm for hysteresis in micromagnetics, Adv. Math. Sci. Appl. 13(2003), 461–485.

    MathSciNet  MATH  Google Scholar 

  14. M. Kružík: Periodic solutions to a hysteresis model in micromagnetics, IMA Preprint 1946/2003, University of Minnesota, Minneapolis, 2003 (To appear in J. Convex Anal.).

    Google Scholar 

  15. M. Kružík: Periodicity properties of solutions to a hysteresis model in micromagnetics, In: M. Feistauer et al. (eds.): Proceedings of ENUMATH 2003 the 5th European Conference on Num. Math. and Adv. Appl., Springer, Berlin, 2004, 605–614.

    Google Scholar 

  16. L._D. Landau and E. M. Lifshitz: On the theory of the dispersion of magnetic permeability of ferromagnetic bodies, Physik Z. Sowjetunion 8(1935), 153–169.

    MATH  Google Scholar 

  17. Z.-Q. Luo, J.-S. Pang and D. Ralph: Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  18. M. Luskin and L. Ma: Analysis of the finite element approximation of microstructure in micromagnetics, SIAM J. Num. Anal. 29(1992), 320–331.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Mielke: Energetic formulation of multiplicative elastoplasticity using dissipation distances, Continuum Mech. Thermodyn. 15(2003), 351–382.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Mielke and F. Theil: Mathematical model for rate-independent phase transformations, In: H.-D. Alber, R. Balean and R. Farwig (eds.): Models of Cont. Mechanics in Analysis and Engineering, Shaker-Verlag, Aachen, 1999, 117–129.

    Google Scholar 

  21. A. Mielke and F. Theil: On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl. 11(2004), 151–189.

    MATH  MathSciNet  Google Scholar 

  22. B._S. Mordukhovich: Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings, Journal of Mathematical Analysis and Applications 183(1994), 250–288.

    Article  MATH  MathSciNet  Google Scholar 

  23. B._S. Mordukhovich: Lipschitzian stability of constraint systems and generalized equations, Nonlinear Anal.-Th. Meth. Appl., 22(1994), 173–206.

    Article  MATH  MathSciNet  Google Scholar 

  24. B._S. Mordukhovich and J. V. Outrata: On second-order subdifferentials and their applications, SIAM J. Optimization 12(2001), 139–169.

    Article  MATH  MathSciNet  Google Scholar 

  25. J._V. Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints, Mathematics of Operations Research 24(1999), 627–644.

    MATH  MathSciNet  Google Scholar 

  26. J._V. Outrata, M. Kočvara and J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer Acad. Publ., Dordrecht-Boston-London, 1998.

    MATH  Google Scholar 

  27. P. Pedregal: Relaxation in ferromagnetism: the rigid case, J. Nonlin. Sci. 4(1994), 105–125.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Pedregal: Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.

    MATH  Google Scholar 

  29. A. Reimers and E. Della Torre: Fast Preisach-based magnetization model and fast inverse hysteresis model, IEEE Trans. on Magnetics 34(1998), 3857–3866.

    Article  Google Scholar 

  30. S._M. Robinson: Generalized equations and their solutions, Part I: Basic theory, Mathematical Programming Study, 10(1979), 128–141.

    MATH  Google Scholar 

  31. S._M. Robinson: Strongly regular generalized equations, Mathematics of Operations Research 5(1980), 43–62.

    Article  MATH  MathSciNet  Google Scholar 

  32. S._M. Robinson: Some continuity properties of polyhedral multifunctions, Mathematical Programming Study, 14(1981), 206–214.

    MATH  Google Scholar 

  33. R._T. Rockafellar and R. Wets: Variational Analysis, Springer Verlag, Berlin, 1998.

    MATH  Google Scholar 

  34. T. Roubíček: Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin, 1997.

    MATH  Google Scholar 

  35. T. Roubíček and M. Kružík: Microstructure evolution model in micromagnetics: Zeitschrift f. Angew. Math. Phys. 55(2004), 159–182.

    MATH  Google Scholar 

  36. T. Roubíček and M. Kružík: Mesoscopic model for ferromagnets with isotropic hardening, Zeitschrift f. Angew. Math. Phys. 56(2005), 107–135.

    Article  MATH  Google Scholar 

  37. S. Scholtes: Introduction to Piecewise Differential Equations, Habilitation Thesis, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Germany, 1994.

    Google Scholar 

  38. H. Schramm and J. Zowe: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM J. Optimization 2(1992), 121–152.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Visintin: A Weiss-type model of ferromagnetism, Physica B 275(2000), 87–91.

    Article  Google Scholar 

  40. L._C. Young: Generalized curves and existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société et des Lettres de Varsovie, Classe III, 30(1937), 212–234.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kočvara, M., Kružík, M., Outrata, J.V. (2006). On the control of an evolutionary equilibrium in micromagnetics. In: Dempe, S., Kalashnikov, V. (eds) Optimization with Multivalued Mappings. Springer Optimization and Its Applications, vol 2. Springer, Boston, MA . https://doi.org/10.1007/0-387-34221-4_8

Download citation

Publish with us

Policies and ethics