Skip to main content

Optimality conditions for a d.c. set-valued problem via the extremal principle

  • Chapter
Optimization with Multivalued Mappings

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 2))

Summary

Set-valued optimization is known as a useful mathematical model for investigating some real world problems with conflicting objectives, arising from economics, engineering and human decision-making. Using an extremal principle introduced by Mordukhovich, we establish optimality conditions for D.C. ( difference of convex ) set-valued optimization problems. An application to vector fractional mathematical programming is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, F. H.: Optimization and Nonsmooth Nnalysis, Wiley, New York (1983).

    Google Scholar 

  2. Corley, H. W.: Optimality conditions for maximization of set-valued functions, Journal of Optimization Theory and Application, 58 (1988), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dien, P. H., Locally Lipschitzian set-valued maps and general extremal problems with inclusion constraints. Acta Math Vietnamica. Vol 1, pp. 109–122, 1983.

    MATH  Google Scholar 

  4. Dinh Tao, P. and Hoai An, L. T.: Convex analysis approach to D. C. programming: theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997) 289–355.

    MATH  MathSciNet  Google Scholar 

  5. Flores-Bazan, F. and Oettli, W.: Simplified optimality conditions for minimizing the difference of vector-valued functions, Journal of Optimization Theory and Application, 108 (2001), 571–586.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gadhi, N. and Metrane, A.: Sufficient Optimality Condition for Vector Optimization Problems Under D.C. Data, To appear in Journal of Global Optimization.

    Google Scholar 

  7. Hiriart-Urruty, J. B.: From Convex Optimization to Nonconvex Optimization. Nonsmooth Optimization and Related Topics. Editors F.H. Clarke, V.F. Demyanov, F. Giannessi, Plenum Press, (1989), 219–239.

    Google Scholar 

  8. Horst, R. and Tuy, H., Global Optimization ( Deterministic Approach ), 3rd ed., Springer-Verlag, New York, 1996.

    Google Scholar 

  9. Kruger, A. Y.: Properties of generalized differentials, Siberian Mathematical Journal, 26 (1985) 822–832.

    Article  MATH  Google Scholar 

  10. Lemaire, B.: Subdifferential of a convex composite functional. Application to optimal control in variational inequalities in nondifferentiable optimization, Proceeding Sopron, Sept. 1984 lecture notes in economics and mayhematical systems springer-verlag, pp. 103–117, 1985.

    Google Scholar 

  11. Lemaire, B.: Duality in reverse convex optimization, Siam J. Optim, Vol. 8, pp. 1029–1037, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Lemaire and M. Volle, Duality in D.C. programing, in Nonconvex Optimization and Its Applications, 27 (1998) 331–345.

    MATH  MathSciNet  Google Scholar 

  13. J-E. Martínez-Legaz, and M. Volle, Duality in D.C. programming: the case of several D.C. constraints, J. Math. Anal. Appl., 237 (1999) 657–671.

    Article  MATH  MathSciNet  Google Scholar 

  14. Martinez-Legaz, J. E. and Seeger, A.: A formula on the approximata subdifferential of the difference of convex functions, Bulletin of the Australian Mathematical Society, 45 (1992) 37–41.

    Article  MATH  MathSciNet  Google Scholar 

  15. Mordukhovich, B. S.: Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech., 40 (1976) 960–969.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mordukhovich, B. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet. Math. Dokl., 22 (1980) 526–530.

    MATH  Google Scholar 

  17. Mordukhovich, B. S.: Approximation methods in problems of optimization and control, Nauka, Moscow; 2nd English edition (to appear).

    Google Scholar 

  18. Mordukhovich, B. S.: Generalized differential calculus for nonsmooth and setvalued mappings, J. Math. Anal. Appl., 183 (1994) 250–288.

    Article  MATH  MathSciNet  Google Scholar 

  19. Mordukhovich, B. S.: The extremal principle and its applications to optimization and economics, in Optimization and Related Topics, A. Rubinov and B. Glover, eds., Applied Optimization Volumes 47, Kluwer, Dordrecht, The Netherlands (2001) 343–369.

    Google Scholar 

  20. Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), 330 and 331, Springer, Berlin, 2005.

    MATH  Google Scholar 

  21. Mordukhovich, B. S. and Shao, Y.: Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996) 1235–1280.

    Article  MATH  MathSciNet  Google Scholar 

  22. Oettli, W.: Kolmogorov conditions for minimizing vectorial optimization problems, OR Spektrum, 17 (1995) 227–229.

    Article  MATH  MathSciNet  Google Scholar 

  23. Penot, J-P.: Duality for anticonvex programs, Journal of Global optimization, 19 (2001) 163–182.

    Article  MATH  MathSciNet  Google Scholar 

  24. Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer, Berlin (1993).

    MATH  Google Scholar 

  25. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F.: The mathematical theory of optimal processe, Wiley, New York (1962).

    Google Scholar 

  26. Rockafellar, R. T.: Convex analysis. Priceton Univ. Press, Princeton, New Jersey (1970).

    MATH  Google Scholar 

  27. A. Taa, Optimality conditions for vector optimization problems of a difference of convex mappings, To appear in Journal of Global optimization.

    Google Scholar 

  28. Tuy, H. and Oettly, W.: On necessary and sufficient conditions for global optimality, Revista de Mathématicas Aplicadas, Vol. 5, pp. 39–41, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Gadhi, N. (2006). Optimality conditions for a d.c. set-valued problem via the extremal principle. In: Dempe, S., Kalashnikov, V. (eds) Optimization with Multivalued Mappings. Springer Optimization and Its Applications, vol 2. Springer, Boston, MA . https://doi.org/10.1007/0-387-34221-4_12

Download citation

Publish with us

Policies and ethics