Skip to main content

Abstract

Low rate high latency data services will co-exist with high rate low latency real-time multimedia applications in the next generation networks. Increasing volume of multimedia flows in an environment with heterogeneity in bandwidth, propagation medium and statistical characteristics of traffic can be expected to generate time-varying demands on the quality of service (QoS) and network resources. In such non-stationary environment, dynamic resource reservation schemes operating in harmony with the variability in demand patterns may provide efficient mechanisms for resource utilization and guarantee QoS compliance. In this work we identify the challenges that need to be addressed in designing a three level core, distribution and edge (CDE) hierarchical network using time-varying resource allocation mechanisms. Learning, prediction and correction (LPC) architecture based upon integration of operational CDE network with online simulation proposed as a design alternative to contemporary networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Technical Report DSL Forum TR-094, “Multi-Service Delivery Framework for Home Networks”, August 2004Produced by: The Architecture and Transport Working Group and DSL Home Technical Working Group, Editor: Mark Dowker, Bell Canada,http://www.dslforum.org/aboutdsl/tr_table.html

    Google Scholar 

  2. Technical Report DSL Forum TR-059, “DSL Evolution-Architecture Requirements for the Support of QoS-Enabled IP Services”, September 2003, Produced by: Architecture and Transport Working Group, Editor: Tom Anschutz, BellSouth Telecommunications, http://www.dslforum.org/aboutdsl/tr_table.html

    Google Scholar 

  3. R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource ReSerVation Protocol (RSVP) — Version 1 Functional Specification”, September 1997

    Google Scholar 

  4. D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow “RSVP-TE: Extensions to RSVP for LSP Tunnels”, RFC 3209, December 2001

    Google Scholar 

  5. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An Architecture for Differentiated Services”, RFC 2475, December 1998

    Google Scholar 

  6. D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, J. McManus, “Requirements for Traffic Engineering Over MPLS”, RFC 2702, September 1999

    Google Scholar 

  7. O. Bonaventure, S. De Cnodder, “A Rate Adaptive Shaper for Differentiated Services”, RFC 2963, October 2000

    Google Scholar 

  8. H. G. Perros, K. M. Elsayed. “Call Admission Control Schemes: A review”, IEEE Communications Magazine, 1996, vol.34 no.11, pp. 82–91

    Article  Google Scholar 

  9. F. Kelly, “Notes on Effective Bandwidths”, Stochastic Networks: Theory and applications, vol. 4 of Royal Statistical Society Lecture Notes Series, Oxford University Press (1996), pp. 141–168

    MATH  Google Scholar 

  10. M. Schwartz, “Broadband Integrated Networks”, Prentice Hall 1996, chap. 6

    Google Scholar 

  11. V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson modeling”, IEEE/ACM Transactions on Networking, vol.3, no.3, pages 226–244 (1996).

    Article  Google Scholar 

  12. V. Paxson, “Growth Trends in Wide-Area TCP Connections”, IEEE Network, July–Aug. 1994, pp.8–17

    Google Scholar 

  13. V. Paxson, “Empirically Derived Analytic Models of Wide-Area TCP Connections”, IEEE/ACM Transactions on Networking, vol.2, no.4, Aug. 1994

    Google Scholar 

  14. P. Danzing, “An Empirical Workload Models for Deriving Wide-Area TCP/IP Network Simulations”, Internetworking: Research and Experience, vol.3, no.1, pp. 1–26, 1992

    Google Scholar 

  15. H. Balakrishnan, V.N. Padmanabhan, “How Network Asymmetry Affects TCP”, IEEE Communications Magazine, April 2001

    Google Scholar 

  16. Y. He, M. Faloutsos, S. Krishnamurthy, “Quantifying Routing Asymmetry in the Internet”, IEEE GLOBECOM 2005, St. Louis

    Google Scholar 

  17. S. Savage, A. Collins, E. Hoffman, J. Snell and T. Anderson, “The End-to-end Effects of Internet Path Selection”, ACM SIGCOMM, pages 289–299, September 1999.

    Google Scholar 

  18. C. Labovitz, J. Malan, F. Jahanian, “Internet Routing Instability”, ACM SIGCOMM, August 1997

    Google Scholar 

  19. H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyabandara, “TCP Performance Implications of Network Asymmetry”, Internet Draft, IETF PILC Working Group, March 2001

    Google Scholar 

  20. M.J. Riezenman, “Optical Nets Brace for Even Higher Traffic”, IEEE Spectrum, Jan 2001, pages44–46

    Google Scholar 

  21. L. Kleinrock, “Queuing Systems Volume II: Computer Applications”, John Wiely & Sons, 1976

    Google Scholar 

  22. L.G. Roberts, “Beyond Moore’s Law: Internet Growth Trends”, Computer, Jan. 2000, pp. 117–118

    Google Scholar 

  23. L.G. Kazovsky, G. Khoe, M. Oskar van Deventer, “Future Telecommunications Networks: Major Trend Projections”, IEEE Communications Magazine, Nov. 1998, pages. 122–127

    Google Scholar 

  24. M.N. Sadiku, “Next Generation Networks”, IEEE Potentials, April/May 2002, pp.6–8

    Google Scholar 

  25. M. Pullen, M. Myjak, C. Bouwens, “Limitations of Internet Protocol Suite for Distributed Simulation in the Large Multicast Environment”, RFC 2502, February 1999

    Google Scholar 

  26. J. Wroclawski, “Specification of the Controlled-Load Network Element Service”, RFC 2211, September 1997

    Google Scholar 

  27. S. Shenker, C. Partridge, R. Guerin, “Specification of Guaranteed Quality of Service”, RFC 2212, September 1997

    Google Scholar 

  28. B. Davie, A. Charny, J.C.R. Bennett, K. Benson, J.Y. Le Boudec, W. Courtney, S. Davari, V. Firoiu, D. Stiliadis, “An Expedited Forwarding PHB (Per-Hop Behavior)”, RFC 3246, March 2002

    Google Scholar 

  29. V. Jacobson, K. Nichols, K. Poduri, “An Expedited Forwarding PHB”, RFC 2598, June 1999

    Google Scholar 

  30. J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “Assured Forwarding PHB Group”, June 1999

    Google Scholar 

  31. K. Nichols, S. Blake, F. Baker, D. Black, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers”, RFC 2474, December 1998

    Google Scholar 

  32. M. Lottor, “Internet Growth (1981–1991)”, RFC 1296, Jan. 1992

    Google Scholar 

  33. B. Rajagopalan, J. Luciani, D. Awduche, “IP over Optical Networks: A Framework”, March 2004

    Google Scholar 

  34. M. Crawford, “Transmission of IPv6 Packets over FDDI Networks”, RFC 2467, December 1998

    Google Scholar 

  35. A.K. Erlang, “The theory of probabilities and telephone conversations”, Nyt Tidsskrift Matematik B 20:33 (1909), English Translation E. Brockmeyer, H.L.Halstrom and A.Jensen (1948), The life and works of A.K.Erlang, The Copenhagen Telephone Company, Copenhagen.

    MATH  Google Scholar 

  36. E. G. Coffman and R. C. Wood, “Interarrival statistics for time sharing systems”, ACM Communications, vol.9, pages 5000–5003 (1966).

    Article  Google Scholar 

  37. P. E. Jackson and C. D. Stubbs, “A study of multi-access computer communications”, AFIPS Conference Proceedings, 1969, vol.34, pp.491–504

    Google Scholar 

  38. E. Fuchs and P. E. Jackson, “Estimates of distributions of random variables for certain computer communications traffic models”, ACM Communications vol.13, pages 752–757 (1970).

    Article  MATH  Google Scholar 

  39. P. F. Pawlita, “Traffic measurements in data networks, recent measurement results, and some implications”, IEEE Trans. Communication vol.29, no.4, pages 525–535 (1981).

    Article  Google Scholar 

  40. R. Jain and S. A. Routhier, “Packet trains-measurements and a new model for computer network traffic”, IEEE Journal Selected Areas Communication vol. 4, no.6, pages 986–995 (1986).

    Article  Google Scholar 

  41. J. F. Schoch and J. A. Hupp, “Performance of the Ethernet local network”, ACM Communications vol.23, no.12, pages 711–721 (1980).

    Article  Google Scholar 

  42. D. N. Murray and P. H. Enslow, “An experimental study of the performance of a local area network”, IEEE Communication Magazine 22: 48–53 (1984).

    Article  Google Scholar 

  43. F. A. Tobagi, “Modeling and measurement techniques in packet communication networks”, Proceedings of IEEE 66: 1423–1447 (1978).

    Article  Google Scholar 

  44. V. Paxson, S. Floyd, “Why We Don’t Know How to Simulate the Internet”, Proceedings of the 1997 Winter Simulation Conference

    Google Scholar 

  45. S. Floyd, V. Paxson, “Difficulties in Simulating the Internet”, IEEE/ACM Transactions on Networking, vol.9, no.4, Aug. 2001

    Google Scholar 

  46. “Draft Supplement to International Standard for Information echnology, Telecommunications and Information Exchange between systems LAN/MAN-Specific requirements”, IEEE 802.11e/D2.0, Nov 2001.

    Google Scholar 

  47. P. Garg, R. Doshi, R. Greene, M. Baker, M. Malek, X. Cheng, “Using IEEE 802.1le MAC for QoS over Wireless”, 22nd IEEE International Performance Computing and Communications Conference, IPCCC 2003, Phoenix, Arizona

    Google Scholar 

  48. J. Yang, J. Ye, S. Papavassiliou, N. Ansari, “A Flexible and Distributed Architecture for Adaptive End-to-End QoS Provisioning in Next-Generation Networks”, IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, February 2005

    Google Scholar 

  49. D. Ferrari, “Workload Characterization and Selection in Computer Performance Measurement”, Computer, 1972, vol.5, no.4, pp. 18–24

    Google Scholar 

  50. A.K. Agrawala, J.M. Mohr, R.M. Bryant, “An Approach to the Workload Characterization Problem”, Computer, 1976, pages 18–32

    Google Scholar 

  51. M. Calzarossa, L. Massari, D. Tessera, “Workload Characterization Issues and Methodologies”, Lecture Notes In Computer Science; vol. 1769, Performance Evaluation: Origins and Directions, 2000, Springer-Verlag London, UK, pages 459–481

    Google Scholar 

  52. M. Calzarossa and G. Serazzi, “Workload characterization: A Survey”, Prceedings of the IEEE, vol.81, no.8, pp.1136–1150, August 1993, http://citeseer.ist.psu.edu/calzarossa93workload.html

    Article  Google Scholar 

  53. S. V. Raghavan, N. Swaminathan, J. Srinivasan, “Predicting Behavior Patterns Using Adaptive Workload Models”, Proceedings of the 7th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 1999

    Google Scholar 

  54. N. Swaminathan, J. Srinivasan, S. V. Raghavan, “Bandwidth-Demand Prediction in Virtual Path in ATM Network Using Genetic Algorithms”, Computer Communications, July 1999, vol.22, no. 12, pp.1127–1135

    Article  Google Scholar 

  55. S.V. Raghavan, Guenter Haring, V. Srinivasan V, N. Vishnu Priya, “Learning Generators for Workloads”, Proc. of Workshop on Workload Characterization in High Performance Computing Environments, MASCOTS’98, July 1998, Montreal, Canada, pages 1–81 to 1–88

    Google Scholar 

  56. G. Haring, “On State-Dependent Workload Characterization of Software Resources”, Proc. ACM Sigmetrics Conference, pages 51–57, 1982.

    Google Scholar 

  57. M. Calzarossa and G. Serazzi, “A Characterization of the Variation in Time of Workload Arrival Patterns”, IEEE Trans, on Computers, 1985, vol.C-34, no.2, pp.156–162

    Google Scholar 

  58. Fan Zhang, J.L. Hellerstein, “An Approach to On-line Predictive Detection”, Proceedings of 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000, 29 Aug.–l Sept. 2000, pp.549–556

    Google Scholar 

  59. J. Ilow, “Forecasting network traffic using FARDVIA models with heavy tailed innovations”, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000. ICASSP’ 00, 5–9 June 2000, vol. 6, pages 3814–3817

    Google Scholar 

  60. M. van Der Schaar, N Sai Shankar, “Cross-layer Wireless Multimedia Transmission: Challenges, Principles, and New Paradigms”, IEEE Wireless Communications, Volume 12, Issue 4, Aug. 2005, page: 50–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Tripathi, S.K., Sharma, P., Raghavan, S.V. (2006). Challenges in Design of Next Generation Networks. In: Nejat Ince, A., Topuz, E. (eds) Modeling and Simulation Tools for Emerging Telecommunication Networks. Springer, Boston, MA . https://doi.org/10.1007/0-387-34167-6_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-34167-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32921-5

  • Online ISBN: 978-0-387-34167-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics