Skip to main content

Regulation of DNA Replication by the Retinoblastoma Tumor Suppressor Protein

  • Chapter
Rb and Tumorigenesis

Part of the book series: Molecular Biology Intelligence Unit ((MIUN))

Summary

RB is a critical tumor suppressor targeted at high frequency in human cancers. As part of its mode of action RB participates in the regulation of DNA replication. In the absence of functional RB aberrant replication cycles occur and genotoxic stresses are compromised for inhibiting of DNA replication. Varied mechanisms through which RB inhibits S-phase have been described and provide evidence for temporally regulated stalling of replication initiation followed by a stable replicative exit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartkova J, Lukas J, Bartek J. Aberrations of the G1-and G1/S-regulating genes in human cancer. Prog Cell Cycle Res 1997; 3:211–220.

    PubMed  CAS  Google Scholar 

  2. Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002; 2(12):910–917.

    Article  PubMed  CAS  Google Scholar 

  3. Kaelin Jr WG. Alterations in G1/S cell-cycle control contributing to carcinogenesis. Ann NY Acad Sci 1997; 833:29–33.

    Article  PubMed  CAS  Google Scholar 

  4. Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10(7):699–703.

    Article  PubMed  CAS  Google Scholar 

  5. Sherr CJ. Cancer cell cycles. Science 1996; 274(5293):1672–1677.

    Article  PubMed  CAS  Google Scholar 

  6. Wang JY, Knudsen ES, Welch PJ. The retinoblastoma tumor suppressor protein. Adv Cancer Res 1994; 64:25–85.

    PubMed  CAS  Google Scholar 

  7. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81(3):323–330.

    Article  PubMed  CAS  Google Scholar 

  8. Friend SH, Bernards R, Rogelj S et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323(6089):643–646.

    Article  PubMed  CAS  Google Scholar 

  9. Lee WH, Bookstein R, Hong F et al. Human retinoblastoma susceptibility gene: Cloning, identification, and sequence. Science 1987; 235(4794): 1394–1399.

    Article  PubMed  CAS  Google Scholar 

  10. DeCaprio JA, Ludlow JW, Figge J et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54(2):275–283.

    Article  PubMed  CAS  Google Scholar 

  11. Whyte P, Buchkovich KJ, Horowitz JM et al. Association between an oncogene and an anti-oncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334(6178):124–129.

    Article  PubMed  CAS  Google Scholar 

  12. Munger K, Werness BA, Dyson N et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J 1989; 8(13):4099–4105.

    PubMed  CAS  Google Scholar 

  13. Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 1999; 13(12):1501–1512.

    PubMed  CAS  Google Scholar 

  14. Lukas J, Bartkova J, Rohde M et al. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995; 15(5):2600–2611.

    PubMed  CAS  Google Scholar 

  15. Lukas J, Parry D, Aagaard L et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 1995; 375(6531):503–506.

    Article  PubMed  CAS  Google Scholar 

  16. Mittnacht S. Control of pRB phosphorylation. Curr Opin Genet Dev 1998; 8(1):21–27.

    Article  PubMed  CAS  Google Scholar 

  17. Morris EJ, Dyson NJ. Retinoblastoma protein partners. Adv Cancer Res 2001; 82:1–54.

    Article  PubMed  CAS  Google Scholar 

  18. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires se quential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18(2):753–761.

    PubMed  CAS  Google Scholar 

  19. Vooijs M, Berns A. Developmental defects and tumor predisposition in Rb mutant mice. Oncogene 1999; 18(38):5293–5303.

    Article  PubMed  CAS  Google Scholar 

  20. Nikitin AY, Riley DJ, Lee WH. A paradigm for cancer treatment using the retinoblastoma gene in a mouse model. Ann NY Acad Sci 1999; 886:12–22.

    Article  PubMed  CAS  Google Scholar 

  21. Yang H, Williams BO, Hinds PW et al. Tumor suppression by a severely truncated species of retinoblastoma protein. Mol Cell Biol 2002; 22(9):3103–3110.

    Article  PubMed  CAS  Google Scholar 

  22. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2(2):103–112.

    Article  PubMed  CAS  Google Scholar 

  23. Huang HJ, Yee JK, Shew JY et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242(4885): 1563–1566.

    Article  PubMed  CAS  Google Scholar 

  24. Goodrich DW, Wang NP, Qian YW et al. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991; 67(2):293–302.

    Article  PubMed  CAS  Google Scholar 

  25. Qin XQ, Chittenden T, Livingston DM et al. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev 1992; 6(6):953–964.

    PubMed  CAS  Google Scholar 

  26. Herrera RE, Makela TP, Weinberg RA. TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol Biol Cell 1996; 7(9): 1335–1342.

    PubMed  CAS  Google Scholar 

  27. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex medi ates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  28. Herrera RE, Sah VP, Williams BO et al. Altered cell cycle kinetics, gene expression, and G1 re striction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 1996; 16(5):2402–2407.

    PubMed  CAS  Google Scholar 

  29. Hurford Jr RK, Cobrinik D, Lee MH et al. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11(11): 1447–1463.

    PubMed  CAS  Google Scholar 

  30. Chew YP, Ellis M, Wilkie S et al. pRB phosphorylation mutants reveal role of pRB in regulating S phase completion by a mechanism independent of E2F. Oncogene 1998; 17(17):2177–2186.

    Article  PubMed  CAS  Google Scholar 

  31. Knudsen ES, Buckmaster C, Chen TT et al. Inhibition of DNA synthesis by RB: Effects on G1/S transition and S-phase progression. Genes Dev 1998; 12(15):2278–2292.

    PubMed  CAS  Google Scholar 

  32. Lukas J, Sorensen CS, Lukas C et al. p16INK4a, but not constitutively active pRb, can impose a sustained G1 arrest: Molecular mechanisms and implications for oncogenesis. Oncogene 1999; 18(27):3930–3935.

    Article  PubMed  CAS  Google Scholar 

  33. Saudan P, Vlach J, Beard P. Inhibition of S-phase progression by adeno-associated virus Rep78 protein is mediated by hypophosphorylated pRb. Embo J 2000; 19(16):4351–4361.

    Article  PubMed  CAS  Google Scholar 

  34. Harrington EA, Bruce JL, Harlow E et al. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci USA 1998; 95(20): 11945–11950.

    Article  PubMed  CAS  Google Scholar 

  35. Knudsen KE, Booth D, Naderi S et al. RB-dependent S-phase response to DNA damage. Mol Cell Biol 2000; 20(20):7751–7763.

    Article  PubMed  CAS  Google Scholar 

  36. Lan Z, Sever-Chroneos Z, Strobeck MW et al. DNA damage invokes mismatch repair-dependent cyclin D1 attenuation and retinoblastoma signaling pathways to inhibit CDK2. J Biol Chem 2002; 277(10):8372–8381.

    Article  PubMed  CAS  Google Scholar 

  37. Avni D, Yang H, Martelli F et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol Cell 2003; 12(3):735–746.

    Article  PubMed  CAS  Google Scholar 

  38. Bosco G, Du W, Orr-Weaver TL. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol 2001; 3(3):289–295.

    Article  PubMed  CAS  Google Scholar 

  39. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71:333–374.

    Article  PubMed  CAS  Google Scholar 

  40. Blow JJ, Hodgson B. Replication licensing—defining the proliferative state? Trends Cell Biol 2002; 12(2):72–78.

    Article  PubMed  CAS  Google Scholar 

  41. Diffley JF, Labib K. The chromosome replication cycle. J Cell Sci 2002; 115(Pt 5):869–872.

    PubMed  CAS  Google Scholar 

  42. Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69:829–880.

    Article  PubMed  CAS  Google Scholar 

  43. Lei M, Tye BK. Initiating DNA synthesis: From recruiting to activating the MCM complex. J Cell Sci 2001; H4(Pt 8):1447–1454.

    Google Scholar 

  44. Mendez J, Stillman B. Perpetuating the double helix: Molecular machines at eukaryotic DNA replica tion origins. Bioessays 2003; 25(12):1158–1167.

    Article  PubMed  CAS  Google Scholar 

  45. Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem 1998; 67:721–751.

    Article  PubMed  CAS  Google Scholar 

  46. Vashee S, Cvetic C, Lu W et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 2003; 17(15): 1894–1908.

    Article  PubMed  CAS  Google Scholar 

  47. Schaarschmidt D, Baltin J, Stehle IM et al. An episomal mammalian replicon: Sequence-independent binding of the origin recognition complex. Embo J 2004; 23(1): 191–201.

    Article  PubMed  CAS  Google Scholar 

  48. Gilbert DM. Making sense of eukaryotic DNA replication origins. Science 2001; 294(5540):96–100.

    Article  PubMed  CAS  Google Scholar 

  49. Todorovic V, Falaschi A, Giacca M. Replication origins of mammalian chromosomes: The happy few. Front Biosci 1999; 4:D859–868.

    PubMed  CAS  Google Scholar 

  50. Vogelauer M, Rubbi L, Lucas I et al. Histone acetylation regulates the time of replication origin firing. Mol Cell 2002; 10(5):1223–1233.

    Article  PubMed  CAS  Google Scholar 

  51. Anglana M, Apiou F, Bensimon A et al. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 2003; H4(3):385–394.

    Article  Google Scholar 

  52. McNairn AJ, Gilbert DM. Epigenomic replication: Linking epigenetics to DNA replication. Bioessays 2003; 25(7):647–656.

    Article  PubMed  CAS  Google Scholar 

  53. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 1992; 357(6374):128–134.

    Article  PubMed  CAS  Google Scholar 

  54. Kreitz S, Ritzi M, Baack M et al. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J Biol Chem 2001; 276(9):6337–6342.

    Article  PubMed  CAS  Google Scholar 

  55. Mendez J, Zou-Yang XH, Kim SY et al. Human origin recognition complex large subunit is de graded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 2002; 9(3):481–491.

    Article  PubMed  CAS  Google Scholar 

  56. DePamphilis ML. The ‘ORC cycle’: A novel pathway for regulating eukaryotic DNA replication. Gene 2003; 310:1–15.

    Article  PubMed  CAS  Google Scholar 

  57. Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: Assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20(22):8602–8612.

    Article  PubMed  CAS  Google Scholar 

  58. Dimitrova DS, Prokhorova TA, Blow JJ et al. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115(Pt 1):51–59.

    Article  PubMed  CAS  Google Scholar 

  59. Cocker JH, Piatti S, Santocanale C et al. An essential role for the Cdc6 protein in forming the prereplicative complexes of budding yeast. Nature 1996; 379(6561):180–182.

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka T, Knapp D, Nasmyth K. Loading of an Mem protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 1997; 90(4):649–660.

    Article  PubMed  CAS  Google Scholar 

  61. Liang C, Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev 1997; 11(24):3375–3386.

    PubMed  CAS  Google Scholar 

  62. Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of prereplicative complexes in Xenopus laevis. Nature 2000; 404(6778):622–625.

    Article  PubMed  CAS  Google Scholar 

  63. Nishitani H, Lygerou Z, Nishimoto T et al. The Cdtl protein is required to license DNA for replication in fission yeast. Nature 2000; 404(6778):625–628.

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdtl and Mcm2-7 during G1 phase. Nat Cell Biol 2002; 4(3):198–207.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Y, Yu Z, Fu X et al. Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell 2002; 109(7):849–860.

    Article  PubMed  CAS  Google Scholar 

  66. Masai H, Arai K. Cdc7 kinase complex: A key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190(3):287–296.

    Article  PubMed  CAS  Google Scholar 

  67. Woo RA, Poon RY. Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2003; 2(4):316–324.

    PubMed  CAS  Google Scholar 

  68. Jiang W, Wells NJ, Hunter T. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc Natl Acad Sci USA 1999; 96(11):6193–6198.

    Article  PubMed  CAS  Google Scholar 

  69. Petersen BO, Lukas J, Sorensen CS et al. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. Embo J 1999; 18(2):396–410.

    Article  PubMed  CAS  Google Scholar 

  70. Herbig U, Griffith JW, Fanning E. Mutation of cyclin/cdk phosphorylation sites in HsCdc6 disrupts a late step in initiation of DNA replication in human cells. Mol Biol Cell 2000; 11(12):4117–4130.

    PubMed  CAS  Google Scholar 

  71. Cook JG, Park CH, Burke TW et al. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci USA 2002; 99(3):1347–1352.

    Article  PubMed  CAS  Google Scholar 

  72. Alexandrow MG, Hamlin JL. Cdc6 chromatin affinity is unaffected by serine-54 phosphorylation, S-phase progression, and overexpression of cyclin A. Mol Cell Biol 2004; 24(4):1614–1627.

    Article  PubMed  CAS  Google Scholar 

  73. Homesley L, Lei M, Kawasaki Y et al. Mem 10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev 2000; 14(8):913–926.

    PubMed  CAS  Google Scholar 

  74. Wohlschlegel JA, Dhar SK, Prokhorova TA et al. Xenopus Mem 10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell 2002; 9(2):233–240.

    Article  PubMed  CAS  Google Scholar 

  75. Zou L, Stillman B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 1998; 280(5363):593–596.

    Article  PubMed  CAS  Google Scholar 

  76. Tercero JA, Labib K, Diffley JF. DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. Embo J 2000; 19(9):2082–2093.

    Article  PubMed  CAS  Google Scholar 

  77. Kamimura Y, Tak YS, Sugino A et al. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. Embo J 2001; 20(8):2097–2107.

    Article  PubMed  CAS  Google Scholar 

  78. Nakajima R, Masukata H. SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell 2002; 13(5):1462–1472.

    Article  PubMed  CAS  Google Scholar 

  79. Wang H, Elledge SJ. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1999; 96(7):3824–3829.

    Article  PubMed  CAS  Google Scholar 

  80. Kamimura Y, Masumoto H, Sugino A et al. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 1998; 18(10):6102–6109.

    PubMed  CAS  Google Scholar 

  81. Araki H, Leem SH, Phongdara A et al. Dpb11, which interacts with DNA polymerase Il(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci USA 1995; 92(25):11791–11795.

    Article  PubMed  CAS  Google Scholar 

  82. Masumoto H, Sugino A, Araki H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 2000; 20(8):2809–2817.

    Article  PubMed  CAS  Google Scholar 

  83. Kubota Y, Takase Y, Komori Y et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 2003; 17(9):1141–1152.

    Article  PubMed  CAS  Google Scholar 

  84. Takayama Y, Kamimura Y, Okawa M et al. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 2003; 17(9):1153–1165.

    Article  PubMed  CAS  Google Scholar 

  85. Tye BK. MCM proteins in DNA replication. Annu Rev Biochem 1999; 68:649–686.

    Article  PubMed  CAS  Google Scholar 

  86. Forsburg SL. Eukaryotic MCM proteins: Beyond replication initiation. Microbiol Mol Biol Rev 2004; 68(1):109–131, table of contents.

    Article  PubMed  CAS  Google Scholar 

  87. Mossi R, Hubscher U. Clamping down on clamps and clamp loaders—the eukaryotic replication factor C. Eur J Biochem 1998; 254(2):209–216.

    PubMed  CAS  Google Scholar 

  88. Mathews CK, Ji J. DNA precursor asymmetries, replication fidelity, and variable genome evolution. Bioessays 1992; 14(5):295–301.

    Article  PubMed  CAS  Google Scholar 

  89. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 1988; 57:349–374.

    Article  PubMed  CAS  Google Scholar 

  90. Merrick CJ, Jackson D, Diffley JF. Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 2004; 279(19):20067–20075.

    Article  PubMed  CAS  Google Scholar 

  91. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5):330–338.

    Article  PubMed  CAS  Google Scholar 

  92. Schweitzer BI, Dicker AP, Bertino JR. Dihydrofolate reductase as a therapeutic target. Faseb J 1990; 4(8):2441–2452.

    PubMed  CAS  Google Scholar 

  93. Zacksenhaus E, Bremner R, Phillips RA et al. A bipartite nuclear localization signal in the retinoblastoma gene product and its importance for biological activity. Mol Cell Biol 1993; 13(8):4588–4599.

    PubMed  CAS  Google Scholar 

  94. Lee WH, Shew JY, Hong FD et al. The retinoblastoma susceptibility gene encodes a nuclear phos-phoprotein associated with DNA binding activity. Nature 1987; 329(6140):642–645.

    Article  PubMed  CAS  Google Scholar 

  95. Mittnacht S, Weinberg RA. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 1991; 65(3):381–393.

    Article  PubMed  CAS  Google Scholar 

  96. Mancini MA, Shan B, Nickerson JA et al. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc Natl Acad Sci USA 1994; 91(1):418–422.

    Article  PubMed  CAS  Google Scholar 

  97. Durfee T, Mancini MA, Jones D et al. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that colocalizes to centers for RNA processing. J Cell Biol 1994; 127(3):609–622.

    Article  PubMed  CAS  Google Scholar 

  98. Markiewicz E, Dechat T, Foisner R et al. Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13(12):4401–4413.

    Article  PubMed  CAS  Google Scholar 

  99. Angus SP, Solomon DA, Kuschel L et al. Retinoblastoma tumor suppressor: Analyses of dynamic behavior in living cells reveal multiple modes of regulation. Mol Cell Biol 2003; 23(22):8172–8188.

    Article  PubMed  CAS  Google Scholar 

  100. Kennedy BK, Barbie DA, Classon M et al. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 2000; 14(22):2855–2868.

    Article  PubMed  CAS  Google Scholar 

  101. Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 2002; 115(Pt 21):4037–4051.

    Article  PubMed  CAS  Google Scholar 

  102. Orr-Weaver TL. Drosophila chorion genes: Cracking the eggshell’s secrets. Bioessays 1991; 13(3):97–105.

    Article  PubMed  CAS  Google Scholar 

  103. Keller C, Ladenburger EM, Kremer M et al. The origin recognition complex marks a replication origin in the human TOP1 gene promoter. J Biol Chem 2002; 277(35):31430–31440.

    Article  PubMed  CAS  Google Scholar 

  104. Sterner JM, Dew-Knight S, Musahl C et al. Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol Cell Biol 1998; 18(5):2748–2757.

    PubMed  CAS  Google Scholar 

  105. Gladden AB, Diehl JA. The cyclin Dl-dependent kinase associates with the prereplication complex and modulates RB.MCM7 binding. J Biol Chem 2003; 278(11):9754–9760.

    Article  PubMed  CAS  Google Scholar 

  106. Sever-Chroneos Z, Angus SP, Fribourg AF et al. Retinoblastoma tumor suppressor protein signals through inhibition of cyclin-dependent kinase 2 activity to disrupt PCNA function in S phase. Mol Cell Biol 2001; 21(12):4032–4045.

    Article  PubMed  CAS  Google Scholar 

  107. Takemura M, Kitagawa T, Izuta S et al. Phosphorylated retinoblastoma protein stimulates DNA polymerase alpha. Oncogene 1997; 15(20):2483–2492.

    Article  PubMed  CAS  Google Scholar 

  108. Krucher NA, Zygmunt A, Mazloum N et al. Interaction of the retinoblastoma protein (pRb) with the catalytic subunit of DNA polymerase delta (p125). Oncogene 2000; 19(48):5464–5470.

    Article  PubMed  CAS  Google Scholar 

  109. Pennaneach V, Salles-Passador I, Munshi A et al. The large subunit of replication factor C promotes cell survival after DNA damage in an LxCxE motif-and Rb-dependent manner. Mol Cell 2001; 7(4):715–727.

    Article  PubMed  CAS  Google Scholar 

  110. Pennaneach V, Barbier V, Regazzoni K et al. Rb Inhibits E2F-1-induced cell death in a LXCXE-dependent manner by active repression. J Biol Chem 2004; 279(22):23376–23383.

    Article  PubMed  CAS  Google Scholar 

  111. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12(15):2245–2262.

    PubMed  CAS  Google Scholar 

  112. Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription factor involved in E1A trans-activation. Cell 1986; 45(2):219–228.

    Article  PubMed  CAS  Google Scholar 

  113. Chellappan SP, Hiebert S, Mudryj M et al. The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65(6):1053–1061.

    Article  PubMed  CAS  Google Scholar 

  114. Kaelin Jr WG, Krek W, Sellers WR et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 1992; 70(2):351–364.

    Article  PubMed  CAS  Google Scholar 

  115. Helin K, Lees JA, Vidal M et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 1992; 70(2):337–350.

    Article  PubMed  CAS  Google Scholar 

  116. Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 2004; 117 (Pt 11):2173–2181.

    Article  PubMed  CAS  Google Scholar 

  117. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  118. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1 /S-regulatory genes. Mol Cell Biol 1995; 15(8):4215–4224.

    PubMed  CAS  Google Scholar 

  119. DeGregori J. The genetics of the E2F family of transcription factors: Shared functions and uniqueroles. Biochim Biophys Acta 2002; 1602(2):131–150.

    PubMed  CAS  Google Scholar 

  120. Muller H, Helin K. The E2F transcription factors: Key regulators of cell proliferation. Biochim Biophys Acta 2000; 1470(1):M1–12.

    PubMed  CAS  Google Scholar 

  121. Ishida S, Huang E, Zuzan H et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 2001; 21(l4):4684–4699.

    Article  PubMed  CAS  Google Scholar 

  122. Muller H, Bracken AP, Vernell R et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 2001; 15(3):267–285.

    Article  PubMed  CAS  Google Scholar 

  123. Polager S, Kalma Y, Berkovich E et al. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 2002; 21(3):437–446.

    Article  PubMed  CAS  Google Scholar 

  124. Ren B, Cam H, Takahashi Y et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002; 16(2):245–256.

    Article  PubMed  CAS  Google Scholar 

  125. Harbour JW, Luo RX, Dei Santi A et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999;98(6):859–869.

    Article  PubMed  CAS  Google Scholar 

  126. Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 1993; 13(10):6501–6508.

    PubMed  CAS  Google Scholar 

  127. Flemington EK, Speck SH, Kaelin Jr WG. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA 1993; 90(15):6914–6918.

    Article  PubMed  CAS  Google Scholar 

  128. Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358(6383):259–261.

    Article  PubMed  CAS  Google Scholar 

  129. Weintraub SJ, Chow KN, Luo RX et al. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 1995; 375(6534):812–815.

    Article  PubMed  CAS  Google Scholar 

  130. Brehm A, Miska EA, McCance DJ et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391(6667):597–601.

    Article  PubMed  CAS  Google Scholar 

  131. Dunaief JL, Strober BE, Guha S et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 1994; 79(1):119–130.

    Article  PubMed  CAS  Google Scholar 

  132. Strober BE, Dunaief JL, Guha et al. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol 1996; 16(4):1576–1583.

    PubMed  CAS  Google Scholar 

  133. Strobeck MW, Knudsen KE, Fribourg AF et al. BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 2000; 97(14):7748–7753.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang HS, Gavin M, Dahiya A et al. Exit from G1 and S phase of the cell cycle is regulated by represser complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 2000; 101(1):79–89.

    Article  PubMed  CAS  Google Scholar 

  135. Dahiya A, Wong S, Gonzalo S et al. Linking the Rb and polycomb pathways. Mol Cell 2001;8(3):557–569.

    Article  PubMed  CAS  Google Scholar 

  136. Nielsen SJ, Schneider R, Bauer UM et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412(6846):561–565.

    Article  PubMed  CAS  Google Scholar 

  137. Harbour JW, Dean DC. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes Dev 2000; 14(19):2393–2409.

    Article  PubMed  CAS  Google Scholar 

  138. Markey MP, Angus SP, Strobeck MW et al. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res 2002;62(22):6587–6597.

    PubMed  CAS  Google Scholar 

  139. Qin XQ, Livingston DM, Ewen M et al. The transcription factor E2F-1 is a downstream target of RB action. Mol Cell Biol 1995; 15(2):742–755.

    PubMed  CAS  Google Scholar 

  140. Wu L, Timmers C, Maiti B et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 2001; 414(6862):457–462.

    Article  PubMed  CAS  Google Scholar 

  141. Li FX, Zhu JW, Hogan CJ et al. Defective gene expression, S phase progression, and maturation during hematopoiesis in E2F1/E2F2 mutant mice. Mol Cell Biol 2003; 23(10):3607–3622.

    Article  PubMed  CAS  Google Scholar 

  142. Cayirlioglu P, Ward WO, Silver Key SC et al. Transcriptional repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol Cell Biol 2003; 23(6):2123–2134.

    Article  PubMed  CAS  Google Scholar 

  143. Jiang W, Hunter T. Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc Natl Acad Sci USA 1997; 94(26):14320–14325.

    Article  PubMed  CAS  Google Scholar 

  144. Kumagai H, Sato N, Yamada M et al. A novel growth-and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol Cell Biol 1999; 19(7):5083–5095.

    PubMed  CAS  Google Scholar 

  145. Jiang W, McDonald D, Hope TJ et al. Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. Embo J 1999; 18(20):5703–5713.

    Article  PubMed  CAS  Google Scholar 

  146. Walter JC. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem 2000; 275(50):39773–39778.

    Article  PubMed  CAS  Google Scholar 

  147. Angus SP, Mayhew CN, Solomon DA et al. RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol Cell Biol 2004; 24(12):5404–5420.

    Article  PubMed  CAS  Google Scholar 

  148. Costanzo V, Shechter D, Lupardus PJ et al. An ATR-and Cdc7-dependent DNA damage check point that inhibits initiation of DNA replication. Mol Cell 2003; 11(l):203–213.

    Article  PubMed  CAS  Google Scholar 

  149. Montagnoli A, Bosotti R, Villa F et al. Drf1, a novel regulatory subunit for human Cdc7 kinase. Embo J 2002; 21(12):3171–3181.

    Article  PubMed  CAS  Google Scholar 

  150. Yanow SK, Gold DA, Yoo HY et al. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J Biol Chem 2003; 278(42):41083–41092.

    Article  PubMed  CAS  Google Scholar 

  151. Mayhew CN, Perkin LM, Zhang X et al. Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 2004.

    Google Scholar 

  152. Sage J, Miller AL, Perez-Mancera PA et al. Acute mutation of retinoblastoma gene function is sufficient for cell cycle reentry. Nature 2003; 424(6945):223–228.

    Article  PubMed  CAS  Google Scholar 

  153. Philips A, Huet X, Plet A et al. The retinoblastoma protein is essential for cyclin A repression in quiescent cells. Oncogene 1998; 16(11):1373–1381.

    Article  PubMed  CAS  Google Scholar 

  154. Angus SP, Fribourg AF, Markey MP et al. Active RB elicits late G1/S inhibition. Exp Cell Res 2002;276(2):201–213.

    Article  PubMed  CAS  Google Scholar 

  155. Chevalier S, Tassan JP, Cox R et al. Both cdc2 and cdk2 promote S phase initiation in Xenopus egg extracts. J Cell Sci 1995; 108 (Pt 5):1831–1841.

    PubMed  CAS  Google Scholar 

  156. Fotedar A, Cannella D, Fitzgerald P et al. Role for cyclin A-dependent kinase in DNA replication in human S phase cell extracts. J Biol Chem 1996; 271(49):31627–31637.

    Article  PubMed  CAS  Google Scholar 

  157. Pagano M, Pepperkok R, Verde F et al. Cyclin A is required at two points in the human cell cycle. Embo J 1992; 11(3):961–971.

    PubMed  CAS  Google Scholar 

  158. Pagano M, Pepperkok R, Lukas J et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 1993; 121(l):101–l 11.

    Article  PubMed  CAS  Google Scholar 

  159. Yan H, Newport J. An analysis of the regulation of DNA synthesis by cdk2, Cip1, and licensing factor. J Cell Biol 1995; 129(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  160. Ohtsubo M, Theodoras AM, Schumacher J et al. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 1995; 15(5):2612–2624.

    PubMed  CAS  Google Scholar 

  161. Resnitzky D, Hengst L, Reed SI. Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kipl. Mol Cell Biol 1995; 15(8):4347–4352.

    PubMed  CAS  Google Scholar 

  162. Coverley D, Laman H, Laskey RA. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 2002; 4(7):523–528.

    Article  PubMed  CAS  Google Scholar 

  163. Ortega S, Prieto I, Odajima J et al. Cydin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003; 35(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  164. Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003;3(3):233–245.

    Article  PubMed  CAS  Google Scholar 

  165. DeGregori J, Leone G, Ohtani K et al. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 1995; 9(23):2873–2887.

    PubMed  CAS  Google Scholar 

  166. Geng Y, Yu Q, Sicinska E et al. Cyclin E ablation in the mouse. Cell 2003; 114(4):431–443.

    Article  PubMed  CAS  Google Scholar 

  167. Walker DH, Mailer JL. Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 1991; 354(6351):314–317.

    Article  PubMed  CAS  Google Scholar 

  168. Knudsen KE, Fribourg AF, Strobeck MW et al. Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J Biol Chem 1999; 274(39):27632–27641.

    Article  PubMed  CAS  Google Scholar 

  169. Fang F, Newport JW. Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle. J Cell Sci 1993; 106 (Pt 3):983–994.

    PubMed  CAS  Google Scholar 

  170. Voitenleitner C, Fanning E, Nasheuer HP. Phosphorylation of DNA polymerase alpha-primase by cyclin A-dependent kinases regulates initiation of DNA replication in vitro. Oncogene 1997;14(13):1611–1615.

    Article  PubMed  CAS  Google Scholar 

  171. Bashir T, Horlein R, Rommelaere J et al. Cyclin A activates the DNA polymerase delta-dependent elongation machinery in vitro: A parvovirus DNA replication model. Proc Natl Acad Sci USA 2000; 97(10):5522–5527.

    Article  PubMed  CAS  Google Scholar 

  172. Almasan A, Yin Y, Kelly RE et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 1995;92(12):5436–5440.

    Article  PubMed  CAS  Google Scholar 

  173. Angus SP, Wheeler LJ, Ranmal SA et al. Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J Biol Chem 2002; 277(46):44376–44384.

    Article  PubMed  CAS  Google Scholar 

  174. Chabes AL, Pfleger CM, Kirschner MW et al. Mouse ribonucleotide reductase R2 protein: A new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA 2003;100(7):3925–3929.

    Article  PubMed  CAS  Google Scholar 

  175. Chabes AL, Bjorklund S, Thelander L. S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem 2004; 279(11):10796–10807.

    Article  PubMed  CAS  Google Scholar 

  176. Tanaka H, Arakawa H, Yamaguchi T et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000; 404(6773):42–49.

    Article  PubMed  CAS  Google Scholar 

  177. Nakano K, Balint E, Ashcroft M et al. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 2000; 19(37):4283–4289.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Business+Science Media

About this chapter

Cite this chapter

Knudsen, E.S., Angus, S.P. (2006). Regulation of DNA Replication by the Retinoblastoma Tumor Suppressor Protein. In: Rb and Tumorigenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33915-9_3

Download citation

Publish with us

Policies and ethics