Skip to main content

Regulation of Early Events in Cell Cycle Progression by Hedgehog Signaling in CNS Development and Tumorigenesis

  • Chapter
Hedgehog-Gli Signaling in Human Disease

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 495 Accesses

Abstract

Hedgehog signaling is essential for proliferation of neural precursor populations in the developing central nervous system (CNS) and is etiologic in cerebellar brain tumors. Here we will contrast general strategies of cell cycle regulation by growth factors in the developing CNS with the emerging concept of a noncanonical Hedgehog “proliferative pathway” as suggested by published studies. Mechanisms utilized by Sonic hedgehog signaling to promote cell cycle progression in CNS progenitors during development and in adult stem cell populations also contribute to CNS tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kandel E, Schwartz JH, Jessell TM. Principles of Neural Science. 3rd ed. New York: Elsevier Science Publishing, 1991.

    Google Scholar 

  2. Bally-Cuif L, Hammerschmidt M. Induction and patterning of neuronal development, and its connection to cell cycle control. Curr Opin Neurobiol 2003; 13(1):16–25.

    PubMed  CAS  Google Scholar 

  3. Cremisi F, Philpott A, Ohnuma S. Cell cycle and cell fate interactions in neural development. Curr Opin Neurobiol 2003; 13(1):26–33.

    PubMed  CAS  Google Scholar 

  4. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2(4):287–293.

    PubMed  CAS  Google Scholar 

  5. Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 2002; 69(6):745–749.

    PubMed  CAS  Google Scholar 

  6. Freeman RS, Estus S, Johnson Jr EM. Analysis of cell cycle-related gene expression in postmitotic neurons: Selective induction of Cyclin D1 during programmed cell death. Neuron 1994; 12(2):343–355.

    PubMed  CAS  Google Scholar 

  7. Kruman II, Wersto RP, Cardozo-Pelaez F et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 2004; 41(4):549–561.

    PubMed  CAS  Google Scholar 

  8. Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 1995; 82(4):631–641.

    PubMed  CAS  Google Scholar 

  9. Klein AL, Zilian O, Suter U et al. Murine numb regulates granule cell maturation in the cerebellum. Dev Biol 2004; 266(1):161–177.

    PubMed  CAS  Google Scholar 

  10. Pardee AB. G1 events and regulation of cell proliferation. Science 1989; 246(4930):603–608.

    PubMed  CAS  Google Scholar 

  11. Angley C, Kumar M, Dinsio KJ et al. Signaling by bone morphogenetic proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. J Neurosci 2003; 23(1):260–268.

    PubMed  CAS  Google Scholar 

  12. Li W, Cogswell CA, LoTurco JJ. Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 1998; 18(21):8853–8862.

    PubMed  CAS  Google Scholar 

  13. Zhu G, Mehler MF, Zhao J et al. Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev Biol 1999; 215(1):118–129.

    PubMed  CAS  Google Scholar 

  14. Solecki DJ, Liu XL, Tomoda T et al. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 2001; 31(4):557–568.

    PubMed  CAS  Google Scholar 

  15. Barnabe-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 2003; 23(12):5149–5160.

    PubMed  CAS  Google Scholar 

  16. Doetsch F, Petreanu L, Caille I et al. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36(6):1021–1034.

    PubMed  CAS  Google Scholar 

  17. Ikeya M, Lee SM, Johnson JE et al. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 1997; 389(6654):966–970.

    PubMed  CAS  Google Scholar 

  18. McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 2003; 53:1–114.

    PubMed  CAS  Google Scholar 

  19. Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999; 126(14):3089–3100.

    PubMed  Google Scholar 

  20. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999; 9(8):445–448.

    PubMed  CAS  Google Scholar 

  21. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog [see comments]. Neuron 1999; 22(1):103–114.

    PubMed  CAS  Google Scholar 

  22. Jensen AM, Wallace VA. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 1997; 124(2):363–371.

    PubMed  CAS  Google Scholar 

  23. Dahmane N, Sanchez P, Gitton Y et al. The Sonic Hedgehog-gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128(24):5201–5212.

    PubMed  CAS  Google Scholar 

  24. Britto J, Tannahill D, Keynes R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat Neurosci 2002; 5(2):103–110.

    PubMed  CAS  Google Scholar 

  25. Lai K, Kaspar BK, Gage FH et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003; 6(1):21–27.

    PubMed  CAS  Google Scholar 

  26. Machold R, Hayashi S, Rutlin M et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 2003; 39(6):937–950.

    PubMed  CAS  Google Scholar 

  27. Schwartz MA, Baron V. Interactions between mitogenic stimuli, or, a thousand and one connections. Curr Opin Cell Biol 1999; 11(2):197–202.

    PubMed  CAS  Google Scholar 

  28. Rhoads RE. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem 1999; 274(43):30337–30340.

    PubMed  CAS  Google Scholar 

  29. Kelly K, Cochran BH, Stiles CD et al. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 1983; 35(3 Pt 2):603–610.

    PubMed  CAS  Google Scholar 

  30. Lau LF, Nathans D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. Embo J 1985; 4(12):3145–3151.

    PubMed  CAS  Google Scholar 

  31. Kretzschmar M, Massague J. SMADs: Mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 1998; 8(1):103–111.

    PubMed  CAS  Google Scholar 

  32. Willert K, Nusse R. Beta-catenin: A key mediator of Wnt signaling. Curr Opin Genet Dev 1998; 8(1):95–102.

    PubMed  CAS  Google Scholar 

  33. Prober DA, Edgar BA. Growth regulation by oncogenes—new insights from model organisms. Curr Opin Genet Dev 2001; 11(1):19–26.

    PubMed  CAS  Google Scholar 

  34. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19(1):1–11.

    PubMed  CAS  Google Scholar 

  35. Bouchard C, Thieke K, Maier A et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. Embo J 1999; 18(19):5321–5333.

    PubMed  CAS  Google Scholar 

  36. Geng Y, Weinberg RA. Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 1993; 90(21):10315–10319.

    PubMed  CAS  Google Scholar 

  37. Grana X, Reddy EP. Cell cycle control in mammalian cells: Role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11(2):211–219.

    PubMed  CAS  Google Scholar 

  38. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors [In Process Citation]. Mol Cell Biol 2000; 20(23):9055–9067.

    PubMed  CAS  Google Scholar 

  39. Oliver TG, Grasfeder LL, Carroll AL et al. Transcriptional profiling of the Sonic hedgehog response: A critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 2003; 100(12):7331–7336.

    PubMed  CAS  Google Scholar 

  40. Sewing A, Burger C, Brusselbach S et al. Human cyclin D1 encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J Cell Sci 1993; 104 (Pt 2):545–555.

    PubMed  CAS  Google Scholar 

  41. Muller D, Bouchard C, Rudolph B et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene 1997; 15(21):2561–2576.

    PubMed  CAS  Google Scholar 

  42. Cheng M, Olivier P, Diehl JA et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. Embo J 1999; 18(6):1571–1583.

    PubMed  CAS  Google Scholar 

  43. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9(10):1149–1163.

    PubMed  CAS  Google Scholar 

  44. Geng Y, Whoriskey W, Park MY et al. Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 1999; 97(6):767–777.

    PubMed  CAS  Google Scholar 

  45. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18(2):753–761.

    PubMed  CAS  Google Scholar 

  46. Fantl V, Stamp G, Andrews A et al. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995; 9(19):2364–2372.

    PubMed  CAS  Google Scholar 

  47. Sicinski P, Donaher JL, Parker SB et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995; 82(4):621–630.

    PubMed  CAS  Google Scholar 

  48. Sicinski P, Donaher JL, Geng Y et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 1996; 384(6608):470–474.

    PubMed  CAS  Google Scholar 

  49. Sicinska E, Aifantis I, Le Cam L et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4(6):451–461.

    PubMed  CAS  Google Scholar 

  50. Hunter T, Pines J. Cyclins and cancer. Cell 1991; 66(6):1071–1074.

    PubMed  CAS  Google Scholar 

  51. Huard JM, Forster CC, Carter ML et al. Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 1999; 126(9):1927–1935.

    PubMed  CAS  Google Scholar 

  52. Ciemerych MA, Kenney AM, Sicinska E et al. Development of mice expressing a single D-type cyclin. Genes Dev 2002; 16(24):3277–3289.

    PubMed  CAS  Google Scholar 

  53. Ohtsubo M, Theodoras AM, Schumacher J et al. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 1995; 15(5):2612–2624.

    PubMed  CAS  Google Scholar 

  54. Sherr CJ. G1 phase progression: Cycling on cue. Cell 1994; 79(4):551–555.

    PubMed  CAS  Google Scholar 

  55. Miyazawa K, Himi T, Garcia V et al. A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci 2000; 20(15):5756–5763.

    PubMed  CAS  Google Scholar 

  56. Okuda M, Horn HF, Tarapore P et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103(1):127–140.

    PubMed  CAS  Google Scholar 

  57. Zhao J, Kennedy BK, Lawrence BD et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 2000; 14(18):2283–2297.

    PubMed  CAS  Google Scholar 

  58. Arata Y, Fujita M, Ohtani K et al. Cdk2-dependent and independent pathways in E2F-mediated S phase induction. J Biol Chem 2000; 275(9):6337–6345.

    PubMed  CAS  Google Scholar 

  59. Geng Y, Yu Q, Sicinska E et al. Cyclin E ablation in the mouse. Cell 2003; 114(4):431–443.

    PubMed  CAS  Google Scholar 

  60. Zarkowska T, Mittnacht S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 1997; 272(19):12738–12746.

    PubMed  CAS  Google Scholar 

  61. Sherr CJ. Cancer cell cycles. Science 1996; 274(5293):1672–1677.

    PubMed  CAS  Google Scholar 

  62. Lee KY, Ladha MH, McMahon C et al. The retinoblastoma protein is linked to the activation of Ras. Mol Cell Biol 1999; 19(11):7724–7732.

    PubMed  CAS  Google Scholar 

  63. Gupta S, Luong MX, Bleuming SA et al. Tumor suppressor pRB functions as a corepressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription. J Cell Physiol 2003; 196(3):541–556.

    PubMed  CAS  Google Scholar 

  64. Valarche I, Tissier-Seta JP, Hirsch MR et al. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 1993; 119(3):881–896.

    PubMed  CAS  Google Scholar 

  65. Quaggin SE, Heuvel GB, Golden K et al. Primary structure, neural-specific expression, and chromosomal localization of Cux-2, a second murine homeobox gene related to Drosophila cut. J Biol Chem 1996; 271(37):22624–22634.

    PubMed  CAS  Google Scholar 

  66. Ren S, Rollins BJ. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 2004; 117(2):239–251.

    PubMed  CAS  Google Scholar 

  67. Jiang Z, Zacksenhaus E, Gallie BL et al. The retinoblastoma gene family is differentially expressed during embryogenesis. Oncogene 1997; 14(15):1789–1797.

    PubMed  CAS  Google Scholar 

  68. Mulligan G, Jacks T. The retinoblastoma gene family: Cousins with overlapping interests. Trends Genet 1998; 14(6):223–229.

    PubMed  CAS  Google Scholar 

  69. Weinberg RA. Tumor suppressor genes. Science 1991; 254(5035):1138–1146.

    PubMed  CAS  Google Scholar 

  70. Hamel W, Westphal M, Shepard HM. Loss in expression of the retinoblastoma gene product in human gliomas is associated with advanced disease. J Neurooncol 1993; 16(2):159–165.

    PubMed  CAS  Google Scholar 

  71. Clarke AR, Maandag ER, van Roon M et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992; 359(6393):328–330.

    PubMed  CAS  Google Scholar 

  72. Jacks T, Fazeli A, Schmitt EM et al. Effects of an Rb mutation in the mouse. Nature 1992; 359(6393):295–300.

    PubMed  CAS  Google Scholar 

  73. Lee EY, Chang CY, Hu N et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992; 359(6393):288–294.

    PubMed  CAS  Google Scholar 

  74. Lee EY, Hu N, Yuan SS et al. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev 1994; 8(17):2008–2021.

    PubMed  CAS  Google Scholar 

  75. Macleod KF, Hu Y, Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. Embo J 1996; 15(22):6178–6188.

    PubMed  CAS  Google Scholar 

  76. Helms AW, Johnson JE. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 1998; 125(5):919–928.

    PubMed  CAS  Google Scholar 

  77. Stone DM, Hynes M, Armanini M et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384(6605):129–134.

    PubMed  CAS  Google Scholar 

  78. Hallonet ME, Teillet MA, Le Douarin NM. A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 1990; 108(1):19–31.

    PubMed  CAS  Google Scholar 

  79. Goodrich LV, Scott MP. Hedgehog and patched in neural development and disease. Neuron 1998; 21(6):1243–1257.

    PubMed  CAS  Google Scholar 

  80. Kalyani AJ, Piper D, Mujtaba T et al. Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J Neurosci 1998; 18(19):7856–7868.

    PubMed  CAS  Google Scholar 

  81. Rowitch DH, B SJ, Lee SM et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci 1999; 19(20):8954–8965.

    PubMed  CAS  Google Scholar 

  82. Ho KS, Scott MP. Sonic hedgehog in the nervous system: Functions, modifications and mechanisms. Curr Opin Neurobiol 2002; 12(1):57–63.

    PubMed  CAS  Google Scholar 

  83. Marigo V, Davey RA, Zuo Y et al. Biochemical evidence that patched is the Hedgehog receptor. Nature 1996; 384(6605):176–179.

    PubMed  CAS  Google Scholar 

  84. Ingham PW. Transducing Hedgehog: The story so far. Embo J 1998; 17(13):3505–3511.

    PubMed  CAS  Google Scholar 

  85. Epstein DJ, Marti E, Scott MP et al. Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 1996; 122(9):2885–2894.

    PubMed  CAS  Google Scholar 

  86. Fan CM, Porter JA, Chiang C et al. Long-range sclerotome induction by sonic hedgehog: Direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 1995; 81(3):457–465.

    PubMed  CAS  Google Scholar 

  87. Hammerschmidt M, Bitgood MJ, McMahon AP. Protein kinase a is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 1996; 10(6):647–658.

    PubMed  CAS  Google Scholar 

  88. Hammerschmidt M, McMahon AP. The effect of pertussis toxin on zebrafish development: A possible role for inhibitory G-proteins in hedgehog signaling. Dev Biol 1998; 194(2):166–171.

    PubMed  CAS  Google Scholar 

  89. Ungar AR, Moon RT. Inhibition of protein kinase a phenocopies ectopic expression of hedgehog in the CNS of wild-type and cyclops mutant embryos. Dev Biol 1996; 178(1):186–191.

    PubMed  CAS  Google Scholar 

  90. DeCamp DL, Thompson TM, de Sauvage FJ et al. Smoothened activates Galphai-mediated signaling in frog melanophores. J. Biol Chem 2000; 275(34):26322–26327.

    CAS  Google Scholar 

  91. Murone M, Rosenthal A, de Sauvage FJ. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr Biol 1999; 9(2):76–84.

    PubMed  CAS  Google Scholar 

  92. Nybakken KE, Turck CW, Robbins DJ et al. Hedgehog-stimulated phosphorylation of the kinesin-related protein Costal2 is mediated by the serine/threonine kinase fused. J Biol Chem 2002; 277(27):24638–24647.

    PubMed  CAS  Google Scholar 

  93. Monnier V, Ho KS, Sanial M et al. Hedgehog signal transduction proteins: Contacts of the fused kinase and Ci transcription factor with the kinesin-related protein Costal2. BMC Dev Biol 2002; 2(1):4.

    PubMed  Google Scholar 

  94. Sisson JC, Ho KS, Suyama K et al. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 1997; 90(2):235–245.

    PubMed  CAS  Google Scholar 

  95. Robbins DJ, Nybakken KE, Kobayashi R et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 1997; 90(2):225–234.

    PubMed  CAS  Google Scholar 

  96. Della Rocca GJ, Maudsley S, Daaka Y et al. Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 1999; 274(20):13978–13984.

    PubMed  CAS  Google Scholar 

  97. Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 1999; 11(2):177–183.

    PubMed  CAS  Google Scholar 

  98. Post GR, Brown JH. G protein-coupled receptors and signaling pathways regulating growth responses. Faseb J 1996; 10(7):741–749.

    PubMed  CAS  Google Scholar 

  99. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998; 273(4):1839–1842.

    PubMed  CAS  Google Scholar 

  100. Goodrich LV, Milenkovic L, Higgins KM et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277(5329):1109–1113.

    PubMed  CAS  Google Scholar 

  101. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15(23):3059–3087.

    PubMed  CAS  Google Scholar 

  102. Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85(6):841–851.

    PubMed  CAS  Google Scholar 

  103. Raffel C, Jenkins RB, Frederick L et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 1997; 57(5):842–845.

    PubMed  CAS  Google Scholar 

  104. Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001; 61(2):513–516.

    PubMed  CAS  Google Scholar 

  105. Marino S, Vooijs M, van Der Gulden H et al. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000; 14(8):994–1004.

    PubMed  CAS  Google Scholar 

  106. Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415(6870):436–442.

    PubMed  CAS  Google Scholar 

  107. Rubin JB, Rowitch DH. Medulloblastoma: A problem of developmental biology. Cancer Cell 2002; 2(1):7–8.

    PubMed  CAS  Google Scholar 

  108. Banker GaG K. Culturing Nerve Cells. Cambridge MA: MIT Press, 1998.

    Google Scholar 

  109. Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 2000; 22(1):64–71.

    PubMed  CAS  Google Scholar 

  110. Ruiz i Altaba A. Gli proteins and Hedgehog signaling. Trends in Genetics 1999; 15(10):418–425.

    PubMed  CAS  Google Scholar 

  111. Sasaki H, Nishizaki Y, Hui C et al. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: Implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 1999; 126(17):3915–3924.

    PubMed  CAS  Google Scholar 

  112. Dai P, Akimaru H, Tanaka Y et al. Sonic Hedgehog-induced activation of the gli1 promoter is mediated by GLI3. J Biol Chem 1999; 274(12):8143–8152.

    PubMed  CAS  Google Scholar 

  113. Bai CB, Joyner AL. Gli1 can rescue the in vivo function of Gli2. Development 2001; 128(24):5161–5172.

    PubMed  CAS  Google Scholar 

  114. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100(4):423–434.

    PubMed  CAS  Google Scholar 

  115. Kinzler KW, Bigner SH, Bigner DD et al. Identification of an amplified, highly expressed gene in a human glioma. Science 1987; 236(4797):70–73.

    PubMed  CAS  Google Scholar 

  116. Ruiz i Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nat Rev Cancer 2002; 2(5):361–372.

    PubMed  CAS  Google Scholar 

  117. Yoon JW, Kita Y, Frank DJ et al. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 2002; 277(7):5548–5555.

    PubMed  CAS  Google Scholar 

  118. Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000; 127(8):1593–1605.

    PubMed  CAS  Google Scholar 

  119. Weiner HL, Bakst R, Hurlbert MS et al. Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 2002; 62(22):6385–9389.

    PubMed  CAS  Google Scholar 

  120. Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 2004; 6(1):103–115.

    PubMed  CAS  Google Scholar 

  121. Henriksson M, Luscher B. Proteins of the Myc network: Essential regulators of cell growth and differentiation. Adv Cancer Res 1996; 68:109–182.

    PubMed  CAS  Google Scholar 

  122. Mateyak MK, Obaya AJ, Adachi S et al. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8(10):1039–1048.

    PubMed  CAS  Google Scholar 

  123. Garson JA, Pemberton LF, Sheppard PW et al. N-myc gene expression and oncoprotein characterisation in medulloblastoma. Br J Cancer 1989; 59(6):889–894.

    PubMed  CAS  Google Scholar 

  124. Stanton BR, Perkins AS, Tessarollo L et al. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 1992; 6(12A):2235–2247.

    PubMed  CAS  Google Scholar 

  125. Sawai S, Shimono A, Hanaoka K et al. Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes. New Biol 1991; 3(9):861–869.

    PubMed  CAS  Google Scholar 

  126. Charron J, Malynn BA, Fisher P et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 1992; 6(12A):2248–2257.

    PubMed  CAS  Google Scholar 

  127. Moens CB, Auerbach AB, Conlon RA et al. A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev 1992; 6(5):691–704.

    PubMed  CAS  Google Scholar 

  128. Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16(20):2699–2712.

    PubMed  CAS  Google Scholar 

  129. Kenney AM, Widlund HR, Rowitch DH. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 2004; 131(1):217–228.

    PubMed  CAS  Google Scholar 

  130. Ayer DE, Eisenman RN. A switch from Myc: Max to Mad: Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7(11):2110–2119.

    PubMed  CAS  Google Scholar 

  131. Hurlin PJ, Queva C, Koskinen PJ et al. Mad3 and Mad4: Novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. Embo J 1995; 14(22):5646–5659.

    PubMed  CAS  Google Scholar 

  132. Schreiber-Agus N, Chin L, Chen K et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 1995; 80(5):777–786.

    PubMed  CAS  Google Scholar 

  133. Wu M, Arsura M, Bellas RE et al. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells. Mol Cell Biol 1996; 16(9):5015–5025.

    PubMed  CAS  Google Scholar 

  134. Lahoz EG, Xu L, Schreiber-Agus N et al. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1. Proc Natl Acad Sci USA 1994; 91(12):5503–5507.

    PubMed  CAS  Google Scholar 

  135. Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003; 130(1):15–28.

    PubMed  CAS  Google Scholar 

  136. Bazarov AV, Adachi S, Li SF et al. A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 2001; 61(3):1178–1186.

    PubMed  CAS  Google Scholar 

  137. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 1991; 65(3):395–407.

    PubMed  CAS  Google Scholar 

  138. McMahon SB, Van Buskirk HA, Dugan KA et al. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94(3):363–374.

    PubMed  CAS  Google Scholar 

  139. Park J, Kunjibettu S, McMahon SB et al. The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev 2001; 15(13):1619–1624.

    PubMed  CAS  Google Scholar 

  140. Lasorella A, Boldrini R, Dominici C et al. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res 2002; 62(1):301–306.

    PubMed  CAS  Google Scholar 

  141. Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382(6591):511–517.

    PubMed  CAS  Google Scholar 

  142. Claassen GF, Hann SR. Myc-mediated transformation: The repression connection. Oncogene 1999; 18(19):2925–2933.

    PubMed  CAS  Google Scholar 

  143. Malynn BA, de Alboran IM, O’Hagan RC et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 2000; 14(11):1390–1399.

    PubMed  CAS  Google Scholar 

  144. Albert T, Urlbauer B, Kohlhuber F et al. Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 1994; 9(3):759–763.

    PubMed  CAS  Google Scholar 

  145. Henriksson M, Bakardjiev A, Klein G et al. Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993; 8(12):3199–3209.

    PubMed  CAS  Google Scholar 

  146. Sears R, Nuckolls F, Haura E et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14(19):2501–2514.

    PubMed  CAS  Google Scholar 

  147. Niklinski J, Claassen G, Meyers C et al. Disruption of Myc-tubulin interaction by hyperphosphorylation of c-Myc during mitosis or by constitutive hyperphosphorylation of mutant c-Myc in Burkitt’s lymphoma. Mol Cell Biol 2000; 20(14):5276–5284.

    PubMed  CAS  Google Scholar 

  148. Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: Cancer-associated and transforming mutations stabilize Myc. Embo J 1999; 18(3):717–726.

    PubMed  CAS  Google Scholar 

  149. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2(10):769–776.

    PubMed  CAS  Google Scholar 

  150. Jia J, Amanai K, Wang G et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 2002; 416(6880):548–552.

    PubMed  CAS  Google Scholar 

  151. Lutterbach B, Hann SR. c-Myc transactivation domain-associated kinases: Questionable role for map kinases in c-Myc phosphorylation. J Cell Biochem 1999; 72(4):483–491.

    PubMed  CAS  Google Scholar 

  152. Dudek H, Datta SR, Franke TF et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275(5300):661–665.

    PubMed  CAS  Google Scholar 

  153. Ye P, Xing Y, Dai Z et al. In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: Evidence that IGF-I increases proliferation of granule cell progenitors. Brain Res Dev Brain Res 1996; 95(1):44–54.

    PubMed  CAS  Google Scholar 

  154. de Pablo F, de la Rosa EJ. The developing CNS: A scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 1995; 18(3):143–150.

    PubMed  Google Scholar 

  155. Schmidt M, Fernandez de Mattos S, van der Horst A et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 2002; 22(22):7842–7852.

    PubMed  CAS  Google Scholar 

  156. Klein RS, Rubin JB, Gibson HD et al. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 2001; 128(11):1971–1981.

    PubMed  CAS  Google Scholar 

  157. Kho AT, Zhao Q, Cai Z et al. Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev 2004; 18(6):629–640.

    PubMed  CAS  Google Scholar 

  158. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci 2001; 24:385–428.

    PubMed  CAS  Google Scholar 

  159. Frank-Kamenetsky M, Zhang XM, Bottega S et al. Small-molecule modulators of Hedgehog signaling: Identification and characterization of Smoothened agonists and antagonists. J Biol 2002; 1(2):10.

    PubMed  Google Scholar 

  160. Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine [see comments]. Nature 2000; 406(6799):1005–1009.

    PubMed  CAS  Google Scholar 

  161. Stecca B, Ruiz i Altaba A. The therapeutic potential of modulators of the Hedgehog-Gli signaling pathway. J Biol 2002; 1(2):9.

    PubMed  Google Scholar 

  162. Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002; 297(5586):1559–1561.

    PubMed  CAS  Google Scholar 

  163. Wetmore C. Sonic hedgehog in normal and neoplastic proliferation: Insight gained from human tumors and animal models. Curr Opin Genet Dev 2003; 13(1):34–42.

    PubMed  CAS  Google Scholar 

  164. Roy S, Ingham PW. Hedgehogs tryst with the cell cycle. J Cell Sci 2002; 115 (Pt 23):4393–4397.

    PubMed  CAS  Google Scholar 

  165. Del Valle L, Enam S, Lassak A et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res 2002; 8(6):1822–1830.

    PubMed  Google Scholar 

  166. Sano T, Lin H, Chen X et al. Differential expression of MMAC/PTEN in glioblastoma multiforme: Relationship to localization and prognosis. Cancer Res 1999; 59(8):1820–1824.

    PubMed  CAS  Google Scholar 

  167. Yeh E, Cunningham M, Arnold H et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6(4):308–318.

    PubMed  CAS  Google Scholar 

  168. Zhao Q, Kho A, Kenney AM et al. Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proc Natl Acad Sci USA 2002; 99(8):5704–5709.

    PubMed  CAS  Google Scholar 

  169. Sim AT, Collins E, Mudge LM et al. Developmental regulation of protein phosphatase types 1 and 2A in post-hatch chicken brain. Neurochem Res 1998; 23(4):487–491.

    PubMed  CAS  Google Scholar 

  170. Santa-Coloma TA. Anp32e (Cpd1) and related protein phosphatase 2 inhibitors. Cerebellum 2003; 2(4):310–320.

    PubMed  CAS  Google Scholar 

  171. Lu KP, Liou YC, Zhou XZ. Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 2002; 12(4):164–172.

    PubMed  CAS  Google Scholar 

  172. Ryo A, Liou YC, Lu KP et al. Prolyl isomerase Pin1: A catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 2003; 116 (Pt 5):773–783.

    PubMed  CAS  Google Scholar 

  173. Lu PJ, Zhou XZ, Liou YC et al. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277(4):2381–2384.

    PubMed  CAS  Google Scholar 

  174. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425(6958):577–584.

    PubMed  CAS  Google Scholar 

  175. Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002; 419(6908):729–734.

    PubMed  CAS  Google Scholar 

  176. Waite KA, Eng C. BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum Mol Genet 2003; 12(6):679–684.

    PubMed  CAS  Google Scholar 

  177. Sakamuro D, Elliott KJ, Wechsler-Reya R et al. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 1996; 14(1):69–77.

    PubMed  CAS  Google Scholar 

  178. Nikiforov MA, Chandriani S, Park J et al. TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol Cell Biol 2002; 22(14):5054–5063.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Kenney, A.M., Rowitch, D.H. (2006). Regulation of Early Events in Cell Cycle Progression by Hedgehog Signaling in CNS Development and Tumorigenesis. In: Hedgehog-Gli Signaling in Human Disease. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33777-6_15

Download citation

Publish with us

Policies and ethics