Skip to main content

Introduction

The Evolution of the Concept of Myofibroblast: Implications for Normal and Pathological Tissue Remodeling

  • Chapter
Tissue Repair, Contraction and the Myofibroblast

Abstract

The recognition of the role of the myofibroblast in granulation tissue contraction and connective tissue remodeling during fibrocontractive diseases has allowed a theoretical and practical progress in the understanding of these pathologies. The observation that TGF-β is the key cytokine in myofibroblast differentiation, correlated with its role in collagen synthesis promotion, shows a coordinated mechanism in connective tissue remodeling. Recent work has furnished new knowledge concerning the molecular mechanisms of tension production by the myofibroblast and indicated that the N-terminal peptide of α-smooth muscle actin exerts an inhibitory action on myofibroblast contraction. Moreover the multiple derivation, both local and from circulating cells, of the myofibroblast begins to be understood. These data point to the myofibroblast as a major regulator of connective tissue remodeling and in turn of epithelial organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabbiani G, Ryan G, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27:549–550.

    Article  PubMed  CAS  Google Scholar 

  2. Schurch W, Seemayer TA, Gabbiani G. Myofibroblast. In: Sternberg SS, ed. Histology for Pathologists. Philadelphia: Lippincott-Raven Publishers, 1997:129–165.

    Google Scholar 

  3. Desmouliere A, Darby LA, Gabbiani G. Normal and pathologic soft tissue remodeling: Role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 2003; 83:1689–1707.

    Article  PubMed  Google Scholar 

  4. Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int J Dev Biol 2004; 48:509–517.

    Article  PubMed  CAS  Google Scholar 

  5. Kissin EY, Korn JH. Fibrosis in scleroderma. Rheum Dis Clin North Am 2003; 29:351–369.

    Article  PubMed  Google Scholar 

  6. Redington AE. Fibrosis and airway remodelling. Clin Exp Allergy 2000; 30(Suppl l):42–45.

    Article  PubMed  Google Scholar 

  7. Darby I, Skalli O, Gabbiani G. α-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63:21–29.

    PubMed  CAS  Google Scholar 

  8. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003;200:500–503.

    Article  PubMed  CAS  Google Scholar 

  9. Chiavegato A, Bochaton-Piallat ML, D’Amore E et al. Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch 1995; 426:77–86.

    Article  PubMed  CAS  Google Scholar 

  10. Tomasek JJ, Gabbiani G, Hinz B et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3:349–363.

    Article  PubMed  CAS  Google Scholar 

  11. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994;331:1286–1292.

    Article  PubMed  CAS  Google Scholar 

  12. Desmouliere A, Geinoz A, Gabbiani F et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122:103–111.

    Article  PubMed  CAS  Google Scholar 

  13. Ronnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 1993; 68:696–707.

    PubMed  CAS  Google Scholar 

  14. Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J 2004; 18:469–479.

    Article  PubMed  CAS  Google Scholar 

  15. Serini G, Bochaton-Piallat ML, Ropraz P et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-betal. J Cell Biol 1998;142:873–881.

    Article  PubMed  CAS  Google Scholar 

  16. Desmouliere A, Redard M, Darby I et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146:56–66.

    PubMed  CAS  Google Scholar 

  17. Ross R, Everett NB, Tyler R. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 1970; 44:645–654.

    Article  PubMed  CAS  Google Scholar 

  18. Sappino AP, Schürch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: Expression of cytoskeletal proteins as markers of phenotypic modulations. Lab Invest 1990; 63:144–161.

    PubMed  CAS  Google Scholar 

  19. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776–1784.

    Article  PubMed  CAS  Google Scholar 

  20. Yanez-Mo M, Lara-Pezzi E, Selgas R et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348:403–413.

    Article  PubMed  Google Scholar 

  21. Forbes SJ, Russo FP, Rey V et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126:955–963.

    Article  PubMed  Google Scholar 

  22. Hashimoto N, Jin H, Liu T et al. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113:243–252.

    Article  PubMed  CAS  Google Scholar 

  23. Abe R, Donnelly SC, Peng T et al. Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites. J Immunol 2001; 166:7556–7562.

    PubMed  CAS  Google Scholar 

  24. Yang L, Scott PG, Giuffre J et al. Peripheral blood fibrocytes from burn patients: Identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 2002; 82:1183–1192.

    PubMed  CAS  Google Scholar 

  25. Schmidt M, Sun G, Stacey MA et al. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003; 171:380–389.

    PubMed  CAS  Google Scholar 

  26. Quan TE, Cowper S, Wu SP et al. Circulating fibrocytes: Collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004; 36:598–606.

    Article  PubMed  CAS  Google Scholar 

  27. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 1999; 250:273–283.

    Article  PubMed  CAS  Google Scholar 

  28. Hinz B, Celetta G, Tomasek JJ et al. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001; 12:2730–2741.

    PubMed  CAS  Google Scholar 

  29. Chaponnier C, Goethals M, Janmey PA et al. The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol 1995;130:887–895.

    Article  PubMed  CAS  Google Scholar 

  30. Derossi D, Joliot AH, Chassaing G et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269:10444–10450.

    PubMed  CAS  Google Scholar 

  31. Hinz B, Gabbiani G, Chaponnier C. The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 2002; 157:657–663.

    Article  PubMed  CAS  Google Scholar 

  32. Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 2003; 14:538–546.

    Article  PubMed  CAS  Google Scholar 

  33. Katoh K, Kano Y, Amano M et al. Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 2001; 153:569–584.

    Article  PubMed  CAS  Google Scholar 

  34. Bogatkevich GS, Tourkina E, Abrams CS et al. Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2003; 285:L334–343.

    PubMed  CAS  Google Scholar 

  35. Doljanski F. The sculpturing role of fibroblast-like cells in morphogenesis. Perspectives in Biology and Medicine 2004; 47:339–356.

    Article  PubMed  Google Scholar 

  36. Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: An example of fibroblastic cell plasticity. Virchows Arch 1994; 425:3–24.

    Article  PubMed  CAS  Google Scholar 

  37. De Wever O, Nguyen QD, Van Hoorde L et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J 2004; 18:1016–1018.

    PubMed  Google Scholar 

  38. Majno G, Gabbiani G, Hirschel BJ et al. Contraction of granulation tissue in vitro: Similarity to smooth muscle. Science 1971; 173:548–550.

    Article  PubMed  CAS  Google Scholar 

  39. Koumas L, Smith TJ, Feldon S et al. Thy-1 expression in human fibroblast subsets defines myofibroblastic or lipofibroblastic phenotypes. Am J Pathol 2003; 163:1291–1300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Gabbiani .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Desmoulière, A., Chaponnier, C., Gabbiani, G. (2006). Introduction. In: Tissue Repair, Contraction and the Myofibroblast. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33650-8_1

Download citation

Publish with us

Policies and ethics