Skip to main content

Current Development in the Determination of Intracellular NADH Level

  • Chapter
Reviews in Fluorescence 2006

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2006))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.5 References

  1. D.E. Kelley, J. He, E.V. Menshikova, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes, Diabetes 51, 2944–2950 (2002)

    PubMed  CAS  Google Scholar 

  2. J.G.D. Birkmayer, C. Vrecko, D. Volc, et al. Nicotinamide adenine dinucleotide (NADH)-a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application, Acta Neurol.Scand. 146, 32–35 (1993)

    CAS  Google Scholar 

  3. S.K. Jonas, C. Benedetto, A. Flatman, et al. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia, Br. J. Cancer 66, 185–191 (1992)

    PubMed  CAS  Google Scholar 

  4. A. Harden, W.J. Young, Proc. Roy. Soc. London B 78, 369 (1906)

    Google Scholar 

  5. S. Yamazaki, K. Miki, K. Kano, et al. Mechanic Study on the Role of the NAD+/NADH Ratio in the Glycolytic Oscillation with a Pyruvate Sensor, J. Electroanal. Chem. 516, 59–65 (2001)

    Article  CAS  Google Scholar 

  6. B.M. Douglas, E. Frank, L. David, K. Hiroshi, Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae, Microbiology 145, 2739–2745 (1999)

    Google Scholar 

  7. T. Finkel, N.J. Holbrook, Oxidants, Oxidative Stress and the Biology of Aging (Insight Review), Nature 408, 239–247 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. C. Mclay, M. Crowell, L. Maynard, J. Nutr. 10, 63–79 (1935)

    Google Scholar 

  9. D.H. Williamson, P. Lund, H.A. Krebs, The Redox State of Free Nicotinamide Adenine Dinucleotide in The Cytoplasm and Mitochondria of Rat Liver, Biochem. J. 103, 514–527 (1967)

    PubMed  CAS  Google Scholar 

  10. Q. Zhang, D.W. Piston, R.H. Goodman, Regulation of corepressor function by nuclear NADH, Science 295, 1895–1897 (2002)

    PubMed  CAS  Google Scholar 

  11. A.K. Al-Ali, Pyridine Nucleotide redox potential in erythrocytes of sandi subjects with sickle cell disease, Acta Haematol. 108, 19–22 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. T.C. Wagner, M.D. Scott, Single extraction method for the spectrophotometric quantification of oxidized and reduced Pyridine Nucleotides in erythrocytes Anal.Biochem. 222, 417–426 (1994)

    Article  PubMed  CAS  Google Scholar 

  13. C.R. Zerez, S.J. Lee, K. Tanaka, spectrophotometric determination of oxidized and reduced Pyridine Nucleotides in erythrocytes, Anal.Biochem. 164, 367–373 (1987)

    Article  PubMed  CAS  Google Scholar 

  14. D.A. Lane, D. Nadeau, Determination of Pyridine Nucleotide contents of Cell monolayers by bioluminescence, J.Biochem.Biophys. Method 17,107–118 (1988)

    Article  CAS  Google Scholar 

  15. U. Ke, K. Hideo, Determination of oxidized and reduced nicotinamide adenine dinucleotide in cell monolayers using a single extraction procedure and a spectrophotometric assay, Anal.Biochem. 338, 131–135 (2005)

    Article  Google Scholar 

  16. A. Rex, L. Pfeifer, F. Fink, et al. Cortical NADH during pharmacological manipulations of the respiratory chain and spreading depression in vivo, J. Neurosci. Res. 57, 359–370 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. J. Liang, Z.H. Liu, R.X. Cai, Intracelluar NADH metabolism in H2O2-induced yeast cell apoptosis, Oral presentation on Xith ISLS. 2004, Tsinghua Univ.

    Google Scholar 

  18. Y.H. Chen, R.X. Cai, Determination of NADH with inhibited fluorometry, Chin. J. Anal. Chem. 32, 719 (2004)

    CAS  Google Scholar 

  19. M. Zhou, Z. Diwu, V.N. Panchuk, et al. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases, Anal. Biochem. 253, 162–168 (1997)

    Article  PubMed  CAS  Google Scholar 

  20. L. Nicola, M. Maidwell, R. Reza, et al. On the development of NAD(P)H-sensitive fluorescent probes, J. Chem. Soc., Perkin Trans. 1, 1541–1546 (2000)

    Google Scholar 

  21. D.W. Piston, S.M. Knobel. Real-time analysis of glucose. metabolism by microscopy, Trends Endocrinol Metab. 10, 413–417 (1999)

    Article  PubMed  CAS  Google Scholar 

  22. X.F. Wang, C.K. Florine, J.J. Lemasters, et al. J. Fluoresc. 5, 71 (1995)

    Article  CAS  Google Scholar 

  23. S. Lahooti, H.K. Yueh, A.W. Neumann, Collids Surf. B. 3, 333 (1995)

    Article  CAS  Google Scholar 

  24. M. Dellinger, M. Geze, R. Santus, et al., Imaging of cells by autofluorescence. A new tool in the probing of biopharmaceutical effects at the intracellular level, Biotechnol. Appl. Biochem. 28, 25–32 (1998)

    PubMed  CAS  Google Scholar 

  25. T. Hama, A. Takahashi, A. Ichihara, et al. Real time in situ confocal imaging of calcium wave in the perfused whole heart of the rat, Cell Signal. 10, 331–337 (1998)

    Article  PubMed  CAS  Google Scholar 

  26. A.L. Nieminen, A.M. Byrne, B. Herman, et al. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species, Am. J. Physiol. Cell Physiol. 272, C1286–C1294 (1997)

    CAS  Google Scholar 

  27. B.R. Masters, P.T. So, E. Gratton, et al., Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy, Ann. NY Acad. Sci. 838, 58–67 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. M. V. Wright, T. B. Kuhn. CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. J. Neurochem. 83, 655–664 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. H. J. Gong, K. M. Chen, G. C. Chen, et al. Redox system in the plasma membranes of two ecotypes of reed (Phragmites communis Trin.) leaves from different habitats. Colloids & Surfaces B: Biointerfaces 32, 163–168 (2003)

    Article  CAS  Google Scholar 

  30. C. Kim, F. L. Crane, W. P. Faulk, et al. Purification and Characterization of a Doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) Reductase from Rat Liver Plasma Membranes. J. Biol. Chem. 277, 16441–16447 (2002)

    Article  PubMed  CAS  Google Scholar 

  31. M. Belting. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends in Biochemical Sciences 28, 145–151 (2003)

    Article  PubMed  CAS  Google Scholar 

  32. A. Bridge, R. Barr, and D. J. Morre. The plasma membrane NADH oxidase of soybean has vitamin K(1) hydroquinone oxidase activity. Biochim Biophys Acta. 1463, 448–458 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. Y.H. Chen, Z.H. Liu, R.X. Cai, Study on Effect of Vitamin K on Intracellular NAD Level in Yeast Cell by Fluorescence spectrum, paper submitted.

    Google Scholar 

  34. M.J. Arends, A.H. Wyllie, Apoptosis: mechanisms and roles in pathology. Internation Review of Experimental Pathology. 32, 223–254 (1991)

    CAS  Google Scholar 

  35. N. Averet, H. Aguilaniu, O. Bunoust, L. Gustafsson, Rigoulet. NADH is specifically channeled through the mitochondrial porin channel in Saccharomyces cerevisiae. M. J Bioenerg Biomembr. 34, 499–506 (2002)

    Article  CAS  Google Scholar 

  36. J. Liang, Z.H. Liu, R.X. Cai, P. Shen, The time course of intracellular NADH in ROS-induced yeast apoptosis, paper submitted.

    Google Scholar 

  37. D.A. Carson, S. Seto, D.B. Wasson, C.J. Carrera, DNA strand breaks, NAD metabolism, and programmed cell death. Exp. Cell Res. 164, 273–281 (1986)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Liu, Zh., Cai, Rx., Wang, J. (2006). Current Development in the Determination of Intracellular NADH Level. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2006. Reviews in Fluorescence, vol 2006. Springer, Boston, MA. https://doi.org/10.1007/0-387-33016-X_4

Download citation

Publish with us

Policies and ethics