Skip to main content

Theory of Metal-Fluorophore Interactions

  • Chapter
Reviews in Fluorescence 2006

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2006))

Abstract

This chapter is mainly a review of research done by the author, concerning theory of surface plasmon resonance interaction with fluorophores. Surface plasmon coupled emission (SPCE) is studied theoretically and compared to experiment. Surface plasmon resonance optical field enhancement is investigated at elongated particles by solving the Maxwell’s equations with the use of spheroidal vector wave functions. Finally, the theoretical possibility of trapping fluorophores by optical gradient forces at surface plasmon enhanced hot spots is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.6. References

  1. J. Homola, S.S. Yee and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1–2): p. 3–15.

    Article  Google Scholar 

  2. B. Liedberg, I. Lunstrom and E. Stenberg, Principles of Biosensing with an Extended Coupling Matrix and Surface-Plasmon Resonance. Sensors and Actuators B-Chemical, 1993. 11(1–3): p. 63–72.

    Article  Google Scholar 

  3. B. Liedberg, C. Nylander and I. Lundstrom, Biosensing with Surface-Plasmon Resonance — How It All Started. Biosensors & Bioelectronics, 1995. 10(8): p. R1–R9.

    Google Scholar 

  4. S. Lofas, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg and I. Lundstrom, Bioanalysis with Surface-Plasmon Resonance. Sensors and Actuators B-Chemical, 1991. 5(1–4): p. 79–84.

    Article  Google Scholar 

  5. J.R. Lakowicz, J. Malicka, I. Gryczynski and Z. Gryczynski, Directional surface plasmoncoupled emission: a new method for high sensitivity detection. Biochemical and Biophysical Research Communications, 2003. 307(3): p. 435–439.

    Article  PubMed  CAS  Google Scholar 

  6. J.R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission. Analytical Biochemistry, 2004. 324(2): p. 153–169.

    Article  PubMed  CAS  Google Scholar 

  7. I. Gryczynski, J. Malicka, Z. Gryczynski and J.R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Analytical Biochemistry, 2004. 324(2): p. 170–182.

    Article  PubMed  CAS  Google Scholar 

  8. J. Malicka, I. Gryczynski, Z. Gryczynski and J.R. Lakowicz, DNA hybridization using surface plasmon-coupled emission. Analytical Chemistry, 2003. 75(23): p. 6629–6633.

    Article  PubMed  CAS  Google Scholar 

  9. N. Calander, Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Analytical Chemistry, 2004. 76(8): p. 2168–2173.

    Article  PubMed  CAS  Google Scholar 

  10. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari and M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667–1670.

    Article  CAS  Google Scholar 

  11. K. Kneipp, H. Kneipp, V.B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R.R. Dasari and M.S. Feld, Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Physical Review E, 1998. 57(6): p. R6281–R6284.

    Article  CAS  Google Scholar 

  12. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari and M.S. Feld, Surface-enhanced non-linear Raman scattering at the single-molecule level. Chemical Physics, 1999. 247(1): p. 155–162.

    Article  CAS  Google Scholar 

  13. S.M. Nie and S.R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997. 275(5303): p. 1102–1106.

    Article  PubMed  CAS  Google Scholar 

  14. N. Calander and M. Willander, Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. Journal of Applied Physics, 2002. 92(9): p. 4878–4884.

    Article  CAS  Google Scholar 

  15. N. Calander and M. Willander, Optical trapping of single fluorescent molecules at the detection spots of nanoprobes. Physical Review Letters, 2002. 89(14).

    Google Scholar 

  16. J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications. Analytical Biochemistry, 2001. 298(1): p. 1–24.

    Article  PubMed  CAS  Google Scholar 

  17. J.R. Lakowicz, Y.B. Shen, S. D’Auria, J. Malicka, Z. Gryczynski and I. Gryczynski, Radiative decay engineering: Biophysical applications. Biophysical Journal, 2002. 82(1): p. 426A–426A.

    Google Scholar 

  18. J.R. Lakowicz, Y.B. Shen, S. D’Auria, J. Malicka, J.Y. Fang, Z. Gryczynski and I. Gryczynski, Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Analytical Biochemistry, 2002. 301(2): p. 261–277.

    Article  PubMed  CAS  Google Scholar 

  19. J.R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski and C.D. Geddes, Radiative decay engineering: the role of photonic mode density in biotechnology. Journal of Physics D-Applied Physics, 2003. 36(14): p. R240–R249.

    Article  CAS  Google Scholar 

  20. J.R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005. 337(2): p. 171–194.

    Article  PubMed  CAS  Google Scholar 

  21. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz and C.D. Geddes, Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology, 2005. 16(1): p. 55–62.

    Article  PubMed  CAS  Google Scholar 

  22. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski and J.R. Lakowicz, Effects of sample thickness on the optical properties of surface plasmon-coupled emission. Journal of Physical Chemistry B, 2004. 108(32): p. 12073–12083.

    Article  CAS  Google Scholar 

  23. E.D. Palic, Handbook of Optical Constants of Solids. 1985, New York: Academic.

    Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics. 1980, Oxford: Pergamon.

    Google Scholar 

  25. C.W. Chew, Waves and Fields in Inhomogeneous Media. 1995, New York: Van Nostrand Reinhold.

    Google Scholar 

  26. R.E. Benner, R. Dornhaus and R.K. Chang, Angular Emission Profiles of Dye Molecules Excited by Surface-Plasmon Waves at a Metal-Surface. Optics Communications, 1979. 30(2): p. 145–149.

    Article  CAS  Google Scholar 

  27. M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions. 1 ed. 1965, Dover Publications, Inc: New York.

    Google Scholar 

  28. A. Sommerfeld, Partial Differential Equations in Physics. 1949, New York: Academic Press.

    Google Scholar 

  29. F.J.P. Schuurmans and A. Lagendijk, Luminescence of Eu(fod)(3) in a homologic series of simple alcohols. Journal of Chemical Physics, 2000. 113(8): p. 3310–3314.

    Article  CAS  Google Scholar 

  30. W.H. Weber and C.F. Eagen, Energy-Transfer from an Excited Dye Molecule to the Surface-Plasmons of an Adjacent Metal. Optics Letters, 1979. 4(8): p. 236–238.

    CAS  Google Scholar 

  31. Y.C. Martin, H.F. Hamann and H.K. Wickramasinghe, Strength of the electric field in apertureless near-field optical microscopy. Journal of Applied Physics, 2001. 89(10): p. 5774–5778.

    Article  CAS  Google Scholar 

  32. D.J. Maxwell, S.R. Emory and S.M. Nie, Nanostructured thin-film materials with surface-enhanced optical properties. Chemistry of Materials, 2001. 13(3): p. 1082–1088.

    Article  CAS  Google Scholar 

  33. H.X. Xu, E.J. Bjerneld, M. Kall and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters, 1999. 83(21): p. 4357–4360.

    Article  CAS  Google Scholar 

  34. F. Zenhausern, M.P. Oboyle and H.K. Wickramasinghe, Apertureless near-Field Optical Microscope. Applied Physics Letters, 1994. 65(13): p. 1623–1625.

    Article  CAS  Google Scholar 

  35. T. Gutjahr-Loser, A. Hornsteiner, W. Krieger and H. Walther, Laser-frequency mixing in a scanning tunneling microscope at 1.3 mu m. Journal of Applied Physics, 1999. 85(9): p. 6331–6336.

    Article  CAS  Google Scholar 

  36. L. Novotny, R.X. Bian and X.S. Xie, Theory of nanometric optical tweezers. Physical Review Letters, 1997. 79(4): p. 645–648.

    Article  CAS  Google Scholar 

  37. J. Jersch, F. Demming, L.J. Hildenhagen and K. Dickmann, Field enhancement of optical radiation in the nearfield of scanning probe microscope tips. Applied Physics a-Materials Science & Processing, 1998. 66(1): p. 29–34.

    Article  CAS  Google Scholar 

  38. C. Girard and A. Dereux, Near-field optics theories. Reports on Progress in Physics, 1996. 59(5): p. 657–699.

    Article  CAS  Google Scholar 

  39. H.X. Xu, J. Aizpurua, M. Kall and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000. 62(3): p. 4318–4324.

    Article  CAS  Google Scholar 

  40. W. Denk and D.W. Pohl, Near-Field Optics — Microscopy with Nanometer-Size Fields. Journal of Vacuum Science & Technology B, 1991. 9(2): p. 510–513.

    Article  CAS  Google Scholar 

  41. J.P. Kottmann, O.J.F. Martin, D.R. Smith and S. Schultz, Field polarization and polarization charge distributions in plasmon resonant nanoparticles. New Journal of Physics, 2000. 2: p. 271–279.

    Article  Google Scholar 

  42. C. Flammer, Spheroidal Wave Functions. 1957, Stanford, California: Stanford University Press.

    Google Scholar 

  43. J.D. Jackson, Classical Electrodynamics. 2 ed. 1975, New York: John Wiley & Sons.

    Google Scholar 

  44. B.P. Sinha and R.H. Macphie, Electromagnetic Scattering by Prolate Spheroids for Plane-Waves with Arbitrary Polarization and Angle of Incidence. Radio Science, 1977. 12(2): p. 171–184.

    Google Scholar 

  45. B.P. Sinha and R.H. Macphie, Electromagnetic Plane-Wave Scattering by a System of 2 Parallel Conducting Prolate Spheroids. Ieee Transactions on Antennas and Propagation, 1983. 31(2): p. 294–304.

    Article  Google Scholar 

  46. M.F.R. Cooray, I.R. Ciric and B.P. Sinha, Electromagnetic Scattering by a System of 2 Parallel Dielectric Prolate Spheroids. Canadian Journal of Physics, 1990. 68(4–5): p. 376–384.

    Google Scholar 

  47. M.F.R. Cooray and I.R. Ciric, Scattering by Systems of Spheroids in Arbitrary Configurations. Computer Physics Communications, 1991. 68(1–3): p. 279–305.

    Article  Google Scholar 

  48. M.F.R. Cooray and I.R. Ciric, Scattering of Electromagnetic-Waves by a System of 2 Dielectric Spheroids of Arbitrary Orientation. Ieee Transactions on Antennas and Propagation, 1991. 39(5): p. 680–684.

    Article  Google Scholar 

  49. M.F.R. Cooray and I.R. Ciric, Scattering of Electromagnetic-Waves by a Coated Dielectric Spheroid. Journal of Electromagnetic Waves and Applications, 1992. 6(11): p. 1491–1507.

    Google Scholar 

  50. S. Nag and B.P. Sinha, Electromagnetic Plane-Wave Scattering by a System of 2 Uniformly Lossy Dielectric Prolate Spheroids in Arbitrary Orientation. Ieee Transactions on Antennas and Propagation, 1995. 43(3): p. 322–327.

    Article  Google Scholar 

  51. S. Asano and G. Yamamoto, Light-Scattering by a Spheroidal Particle. Applied Optics, 1975. 14(1): p. 29–49.

    Google Scholar 

  52. S. Asano, Light-Scattering Properties of Spheroidal Particles. Applied Optics, 1979. 18(5): p. 712–723.

    Google Scholar 

  53. S. Asano and M. Sato, Light-Scattering by Randomly Oriented Spheroidal Particles. Applied Optics, 1980. 19(6): p. 962–974.

    CAS  Google Scholar 

  54. Y.P. Han and Z.S. Wu, Scattering of a spheroidal particle illuminated by a Gaussian beam. Applied Optics, 2001. 40(15): p. 2501–2509.

    Google Scholar 

  55. M.P. Sheetz, ed. Laser Tweezers in Cell Biology. Methods in Cell Biology. Vol. 55. 1998, Academic Press: New York.

    Google Scholar 

  56. C.C. Tannoudji, J. Dupont-Roc and G. Grynberg, Atomic-Photon Interactions—Basic Processes and Applications. 1992, New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Calander, N. (2006). Theory of Metal-Fluorophore Interactions. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2006. Reviews in Fluorescence, vol 2006. Springer, Boston, MA. https://doi.org/10.1007/0-387-33016-X_3

Download citation

Publish with us

Policies and ethics