Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Suhir, M. Fukuda, and C.R. Kurkjian, Eds., Reliability of photonic materials and structures, Materials Research Society Symposia Proceedings, Vol. 531, 1998.

    Google Scholar 

  2. D. Ingman and L.A. Reznik, Dynamic reliability model for damage Accumulation Processes, J. Nucl. Technol, 75, pp. 261–282 (1986).

    Google Scholar 

  3. D. Ingman and L.A. Reznik, Dynamic character of failure state in damage accumulation processes, Nuclear Science and Engineering, 107, pp. 284–290 (1991).

    Google Scholar 

  4. D. Ingman and L.A. Reznik, A dynamic model for element reliability, Nuclear Engineering and Design, 70, pp. 209–213 (1982).

    Article  Google Scholar 

  5. K.K. Phani, Strength of long optical glass fibers, Journal of Applied Physics, 62, pp. 719–720 (1987).

    Article  Google Scholar 

  6. D.S. Durham and W.J. Padgett, Cumulative damage models for system failure with application to carbon fibers and composites, Technometrics, 39, pp. 34–44 (1997).

    Article  MATH  Google Scholar 

  7. H.M. Taylor, The Poisson-Weibull flaw model for brittle fiber strength, in J. Galambos et al., Eds., Extreme Value Theory, Amsterdam, Kluwer, 1994, pp. 43–59.

    Google Scholar 

  8. M.I. Zeifman and D. Ingman, A dynamic view of strength bimodality of optical fibers, 2003.

    Google Scholar 

  9. A. Dumai, Reliability prediction on tensile loaded fiber optics, Research Thesis, Technion, 1991.

    Google Scholar 

  10. V.A. Petrov, A.Ya Bashkarev, and V.I. Vettegren, Physical Basis of Durability Forecasting for Engineering Materials, Politekhnika, Sankt-Petersburg, 1993 (in Russian).

    Google Scholar 

  11. V.S. Kuksenko and V.P. Tamuz, Fracture Micromechanics of Polymer Materials, Martinus Nijhoff, Dordrecht, 1981.

    Google Scholar 

  12. M.I. Zeifman and D. Ingman, A percolation model for lifetime variability in polymeric materials under creep conditions, Journal of Applied Physics, 88, pp. 76–87 (2002).

    Article  Google Scholar 

  13. M.I. Zeifman, A coarse semi-analytical lattice model of time-dependent failure of hierarchical materials, Europhysics Letters, 63, pp. 333–339 (2003).

    Article  Google Scholar 

  14. G.P. Cherepanov, et al., Fractal fracture mechanics—a review, Engineering Fracture Mechanics, 51, pp. 997–1033 (1995).

    Article  Google Scholar 

  15. B.S. Everitt and D.J. Hand, Finite Mixture Distributions, Chapmen and Hall, Cambridge, GB, 1981.

    MATH  Google Scholar 

  16. D.B. Barker and Y. Yang, Effect of proof testing on optical fiber fusion splices, http://www.nepp.nasa.gov

  17. P. Beumont and H. Sekine, Physical modelling of engineering problems of composites and structures, Applied Composite Materials, 7, pp. 13–37 (2000).

    Article  Google Scholar 

  18. R.J. Castilone and T.A. Hanson, Strength and dynamic fatigue characteristic of aged fiber, Corning Inc., Corning, NY.

    Google Scholar 

  19. J.A. Collins, Failure of materials and Mechanical Design, 2nd edition, John Wiley&Sons, New York, 1981.

    Google Scholar 

  20. F. Desrumaux, F. Meraghni and M.L. Benzeggagh, Micromechanical modeling coupled to a reliability approach for damage evolution prediction in composite materials, Applied Composite Materials, 7, pp. 231–250 (2000).

    Article  Google Scholar 

  21. X. Diao, A statistical equation of damage evolution, Engineering Fracture Mechanics, 52, pp. 33–42 (1995).

    Article  Google Scholar 

  22. X. Diao and X. Xing, Nonequilibrium statistical theory of damage fracture for quasi-brittle materials, Engineering Fracture Mechanics, 56, pp. 321–330 (1997).

    Article  Google Scholar 

  23. A. Ekberg, Fracture mechanics—some notes, http://www.solid.chalmers.se/~anek/research/fm.pdf.

  24. M. Fukuda, Historical overview and future of optoelectronics reliability for optical fiber communication systems, Microelectronics Reliability, 40, pp. 27–35 (2000).

    Article  Google Scholar 

  25. R. Ganesan, A stochastic modeling and analysis methodology for quantification of fatigue damage, Comput. Methods Appl. Mech. Engrg., 190, pp. 1005–1019 (2000).

    Google Scholar 

  26. G.S. Glasemann, The mechanical behavior of large flaws in optical fiber and their role in reliability prediction, Corning, New York. http://www.corning.com/opticalfiber/pdf/tr3268.pdf

  27. W. Griffioen, et al., Evaluation of optical fiber lifetime models, Proc. SPIE, Vol. 1791, Optical Materials Reliability and Testing, 1992.

    Google Scholar 

  28. S.L. Semenov, Physical process determining strength and durability of optic fibers, Moscow, 1997.

    Google Scholar 

  29. D. Sauvage, D. Laffitte, J. Perinet, Ph. Berthier, and J.L. Gourdard, Reliability of optoelectronic components for telecommunications, Microelectronics Reliability, 40, pp. 1701–1708 (2000).

    Article  Google Scholar 

  30. G.S. Wang, A probabilistic damage accumulation solution based on crack closure model, International Journal of Fatigue, 21, pp. 531–547 (1999).

    Article  Google Scholar 

  31. D.S. Wilkinson, E. Maire, and R. Fougeres, A model for damage in a clustered particulate composite, Materials Science and Engineering, A262, pp. 264–270 (1999).

    Google Scholar 

  32. M.P. Wnuk, Constitutive modeling of damage accumulation and fracture in multiphase materials, Comput. Methods Appl. Mech. Engrg., 151, pp. 587–591 (1998).

    Article  MATH  Google Scholar 

  33. J. Jireh, Yue Energy Concepts for Fracture, http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/anal/yue/energy.html

  34. E. Suhir, Applied Probability for Engineers and Scientists, McGraw Hill, New York, 1997.

    Google Scholar 

  35. E. Suhir, Polymer coated optical glass fibers: review and extension, Proceedings of the POLYTRONIK’2003, Montreaux, October, 21–24, 1997.

    Google Scholar 

  36. E. Suhir, V. Ogenko, and D. Ingman, Two-point bending of coated optical fibers, Proceedings of the PhoMat’2003 Conference, San-Francisco, CA, August 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ingman, D., Mirer, T., Suhir, E. (2007). Dynamic Physical Reliability in Application to Photonic Materials. In: Suhir, E., Lee, Y.C., Wong, C.P. (eds) Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-32989-7_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-32989-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27974-9

  • Online ISBN: 978-0-387-32989-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics