Skip to main content

Developmental Programming of Cardiovascular Dysfunction

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

  • 1177 Accesses

Abstract

Population based studies of developmental programming of adulthood cardiovascular disease have implied associations between intrauterine growth restriction and a range of adulthood indices of cardiovascular dysfunction and risk. Whilst the emphasis has been on the programming of hypertension, there is also evidence for an impact of the early life environment on later development of vascular endothelial dilator dysfunction and associated risk factors including inflammatory and thrombogenic bio-markers, dyslipidaemia and vascular compliance. In animal models, researchers have been more circumspect in the cardiovascular parameters studied and it is not always possible to draw parallels with the human situation. There is, nonetheless, strong evidence for developmental programming of reduced endothelium dependent dilatation in a variety of models of maternal nutritional imbalance which share similarity with the human data and may imply an important role in the aetiology of developmentally induced cardiovascular risk. Studies of inflammatory bio-markers, lipid profiles and compliance in animal models are too few to allow comparison. Increasing evidence for altered sympathetic activity in man and animals provides an important channel for future research effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt BJ, Jurd KM. The endothelium in health and disease. In: Hunt B, Poston L, Schachter M et al, eds. An Introduction to Vascular Biology. Cambridge University Press, 2002.

    Google Scholar 

  2. Galley HF, Webster NR. Physiology of the Endothelium. Br J Anaesth 2004; 93:105–113.

    Article  PubMed  CAS  Google Scholar 

  3. Landmesser U, Hornig B, Drexler H. Endothelial function: A critical determinant in atherosclerosis? Circulation 2004; 109:27–33.

    Article  Google Scholar 

  4. Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and endothelium. Am J Med 2004; 117:109–117.

    Article  PubMed  CAS  Google Scholar 

  5. Chan N, Vallance P. Nitric Oxide. In: Hunt B, Poston L, Schachter M et al, eds. An Introduction to Vascular Biology. Cambridge University Press, 2002.

    Google Scholar 

  6. Busse R, Edwards G, Feletou M et al. EDHF: Bringing the concepts together. Trends in Pharmacol Sci 2002; 23:374–380.

    Article  CAS  Google Scholar 

  7. Halcox JPJ, Schenke WH, Zalos G et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002; 106:653–658.

    Article  PubMed  Google Scholar 

  8. Libby P. Inflammation and atherosclerosis. Nature 2002; 420:868–874.

    Article  PubMed  CAS  Google Scholar 

  9. Anderson TJ, Uehata A, Gerhard MD et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26:1235–1241.

    Article  PubMed  CAS  Google Scholar 

  10. Leeson CP, Whincupp PH, Cook DG et al. Flow-mediated dilatation in 9–11 year old children: The influence of intrauterine and childhood factors. Circulation 1997; 96:2233–2238.

    PubMed  CAS  Google Scholar 

  11. Leeson CP, Katternhorm M, Morley R et al. Impact of low birthweight and cardiovascular risk factors on endothelial function in early adult life. Circulation 2001; 103:1264–1268.

    PubMed  CAS  Google Scholar 

  12. Goodfellow J, Bellamy NF, Gorman ST et al. Endothelial function is impaired in fit young adults of low birthweight. Cardiovascular Research 1998; 40:600–606.

    Article  PubMed  CAS  Google Scholar 

  13. Martin H, Hu J, Gennser G et al. Impaired endothelial function and increased carotid stiffness in 9-year old children with low birthweight. Circulation 2000; 102:2739–2744.

    PubMed  CAS  Google Scholar 

  14. Singhal A, Lucas A. Early origins of cardiovascular disease: Is there a unifying hypothesis? Lancet 2004; 363:1642–1645.

    Article  PubMed  Google Scholar 

  15. Singhal A, Cole TJ, Fewtrell M et al. Breastmilk feeding and lipoprotein profile in adolescents born preterm: Follow-up of a prospective randomised study. Lancet 2004; 15(363):1571–1578.

    Article  Google Scholar 

  16. Brawley L, Itoh S, Torrens C et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 2003; 54:83–90.

    Article  PubMed  CAS  Google Scholar 

  17. Brawley L, Torrens C, Anthony FW et al. Glycine rectifies vascular dysfunction induced by dietary protein imbalance in pregnancy. J Physiol 2004; 554:497–504.

    Article  PubMed  CAS  Google Scholar 

  18. Torrens C, Brawley L, Barker AC et al. Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J Physiol 2003; 15:77–84.

    Article  Google Scholar 

  19. Jackson AA, Dunn RL, Marchand MC et al. Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin Sci (Lond) 2002; 103:633–639.

    PubMed  CAS  Google Scholar 

  20. Lamireau D, Nuyt AM, Hou X et al. Altered vascular function in fetal programming of hypertension. Stroke 2002; 33:2992–2998.

    Article  PubMed  Google Scholar 

  21. Ozaki T, Hawkins P, Nishina H et al. Effects of undernutrition in early pregnancy on systemic small artery function in late-gestation fetal sheep. Am J Obstet Gynecol 2000; 183:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  22. Holemans K, Gerber R, Meurrens K et al. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr 1999; 81:73–79.

    PubMed  CAS  Google Scholar 

  23. Franco MDC, Arruda RM, Dantas AP et al. Intrauterine undernutrition: Expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 2002; 56:145–153.

    Article  CAS  Google Scholar 

  24. Franco MDC, Akamine EH, Di Marco GS et al. NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: Involvement of the renin-angiotensin system. Cardiovasc Res 2004; 59:767–775.

    Article  Google Scholar 

  25. Hamilton CA, Brosnan MJ, Al-Benna A et al. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension 2002; 40:755–762.

    Article  PubMed  CAS  Google Scholar 

  26. Touyz RM. Reactive oxygen species, vascular oxidative stress and redox signalling in hypertension. What is the clinical significance? Hypertension 2004; 44:248–252.

    Article  PubMed  CAS  Google Scholar 

  27. Ozaki T, Nishina H, Hanson MA et al. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 2001; 530:141–152.

    Article  PubMed  CAS  Google Scholar 

  28. Khan IY, Taylor PD, Dekou V et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 2003; 41:168–175.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor PD, Khan IY, Hanson MA et al. Impaired EDHF mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy J Physiol 2004; 558:943–951.

    Article  PubMed  CAS  Google Scholar 

  30. Khan IY, Dekou V, Douglas G et al. A high fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 2005; 288:R127–133.

    PubMed  CAS  Google Scholar 

  31. Khan I, Dekou V, Hanson M et al. Predictive adaptive responses to maternal high fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 2004; 1001:1097–1102.

    Article  Google Scholar 

  32. Gluckman PD, Hanson MA. Living with the past: Evolution, development and patterns of disease. Science 2004; 305:1733–173.

    Article  PubMed  CAS  Google Scholar 

  33. Molnar J, Howe DC, Nijland MJ et al. Prenatal dexamethasone leads to both endothelial dysfunction and vasodilatory compensation in sheep. J Physiol 2003; 547:61–66.

    Article  PubMed  CAS  Google Scholar 

  34. Szmitko PE, Wang CH, Weisel RD et al. New markers of inflammation and endothelial cell activation. Circulation 2003; 108:1917–1923.

    Article  PubMed  Google Scholar 

  35. Szmitko PE, Wang C-H, Weisel RD et al. Biomarkers of vascular disease linking inflammation to endothelial activation. Circulation 2003; 108:2041–2048.

    Article  PubMed  Google Scholar 

  36. McAllister AS, Atkinson AB, Johnston GD et al. Relationship of endothelial function to birth weight in humans. Diabetes Care 1999; 22:2061–2066.

    PubMed  CAS  Google Scholar 

  37. Singhal A, Cole TJ, Fewtrell M et al. Is slower early growth beneficial for long term cardiovascular health? Circulation 2004; 109:1108–1113.

    Article  PubMed  Google Scholar 

  38. Sattar N, McConnachie A, O’Reilly D et al. Inverse association between birth weight and C-reactive protein concentrations in the MIDSPAN. Family Study. Arterioscler Thromb Vasc Biol 2004; 24:583–587.

    Article  PubMed  CAS  Google Scholar 

  39. Martyn CN, Meade TW, Stirling Y et al. Plasma concentrations of fibrinogen and factor VII in adult life and their relation to intra-uterine growth. Br J Haematol 1995; 89:142–146.

    PubMed  CAS  Google Scholar 

  40. Ijzerman RG, Stehouwer CD, de Geus EJ et al. The association between birth weight and plasma fibrinogen is abolished after the elimination of genetic influences. J Thromb Haemost 2003; 1:239–242.

    Article  PubMed  CAS  Google Scholar 

  41. Byberg L, McKeigue PM, Zethelius B et al. Birth weight and the insulin resistance syndrome: Association of low birth weight with truncal obesity and raised plasminogen activator inhibitor-1 but not with abdominal obesity or plasma lipid disturbances. Diabetologia 2000; 43:54–60.

    Article  PubMed  CAS  Google Scholar 

  42. Barja-Fidalgo C, Souza EP, Silva SV et al. Impairment of inflammatory response in adult rats submitted to maternal undernutrition during early lactation: Role of insulin and glucocorticoid. Inflamm Res 2003; 52:470–6.

    Article  PubMed  CAS  Google Scholar 

  43. Barker DJ. The intra-uterine origins of disturbed cholesterol homeostasis. Acta Paediatr 1999; 88:483–484.

    Article  PubMed  CAS  Google Scholar 

  44. Owen CG, Whincup PH, Odoki K et al. Birth weight and blood cholesterol level: A study in adolescents and systematic review. Pediatrics 2003; 111:1081–1089.

    Article  PubMed  Google Scholar 

  45. Donker GA, Labarthe DR, Harrist RB et al. Low birth weight and serum lipid concentrations at age 7–11 years in a biracial sample. Am J Epidemiol 1997; 145:398–407.

    PubMed  CAS  Google Scholar 

  46. Tenhola S, Martikainen A, Rahiala E et al. Serum lipid concentrations and growth characteristics in 12-year-old children born small for gestational age. Padiatr Res 2000; 48:623–628.

    CAS  Google Scholar 

  47. Ziegler B, Johnsen SP, Thulstrup AM et al. Inverse association between birth weight, birth length and serum total cholesterol in adulthood. Scand Cardiovasc J 2000; 34:584–588.

    Article  PubMed  CAS  Google Scholar 

  48. Kuzawa CW, Adair LS. Lipid profiles in adolescent Filipinos: Relation to birth weight and maternal energy status during pregnancy. Am J Clin Nutr 2003; 77:960–966.

    PubMed  CAS  Google Scholar 

  49. Davies AA, Smith GD, Ben-Shlomo Y et al. Low birth weight is associated with higher adult total cholesterol concentration in men: Findings from an occupational cohort of 25,843 employees. Circulation 2004; 110:1258–1262.

    Article  PubMed  Google Scholar 

  50. Napoli C, Glass CK, Witztum JL et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999; 354:1234–1241.

    Article  PubMed  CAS  Google Scholar 

  51. Lucas A, Barker DJ, Desai DJ et al. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br J Nutrition 1996; 76:605–612.

    Article  CAS  Google Scholar 

  52. Kind KL, Clifton PM, Katsman AI et al. Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am J Physiol 1999; 277:R1675–1682.

    PubMed  CAS  Google Scholar 

  53. Ghosh P, Bitsanis D, Ghebremeskel K et al. Abnormal fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol 2001; 533:815–822.

    Article  PubMed  CAS  Google Scholar 

  54. Palinski W, D’Armiento FP, Witztum JL et al. Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ Res 2001; 89:991–996.

    PubMed  CAS  Google Scholar 

  55. Mott GE, Jackson EM, DeLallo et al. Differences in cholesterol metabolism in juvenile baboons are programmed by breast-versus formula feeding. J Lipid Res 1995; 36:299–307.

    PubMed  CAS  Google Scholar 

  56. Kingwell BA, Gatzka CD. Aterial stiffness and prediction of cardiovascular risk. J Hypertens 2002; 20:2337–2340.

    Article  PubMed  CAS  Google Scholar 

  57. Leeson CP, Katternhorm M, Deanfield JE et al. Duration of breast feeding and arterial distensibility in early life: population based study. BMJ 2001; 332:643–647.

    Article  Google Scholar 

  58. Martyn CN, Barker DJ, Jespersen S et al. Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 1995; 73:116–121.

    PubMed  CAS  Google Scholar 

  59. Montgomery AA, Ben-Sholmo Y, McCarthy A et al. Birth size and arterial compliance in young adults. Lancet 2000; 355:2136–2137.

    Article  PubMed  CAS  Google Scholar 

  60. Kumeran K, Fall Ch, Martyn CN et al. Blood pressure, arterial compliance and left ventricular mass; no relation to small size at birth in south Indian adults. Heart 2000; 83:272–7.

    Article  Google Scholar 

  61. Berry CL, Looker T. An alteration in the chemical structure of the aortic wall induced by a finite period of growth inhibition. J Anat 1973; 114:83–94.

    PubMed  CAS  Google Scholar 

  62. Gardner DS, Pearce S, Dandrea J et al. Peri-implantation undernutrition programs blunted angiotensin II evoke baroreflex responses in young adult sheep. Hypertension 2004; 43:1290–1296.

    Article  PubMed  CAS  Google Scholar 

  63. Phillips DI, Barker DJ. Association between low birthweight and high resting pulse in adult life: Is the sympathetic nervous system involved in programming the insulin resistance syndrome. Diabet Med 1997; 14:673–677.

    Article  PubMed  CAS  Google Scholar 

  64. Ruijtenbeek K, le Noble FA, Janssen GM et al. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 2000; 102:2892–2897.

    PubMed  CAS  Google Scholar 

  65. Young JB, Kaufman LN, Saville ME et al. Increased sympathetic nervous system activity in rats fed a low-protein diet. Am J Physiol 1985; 248:R627–37.

    PubMed  CAS  Google Scholar 

  66. Sanders MW, Fazzi GE, Janssen GM et al. Reduced uteroplacental blood flow alters renal arterial reactivity and glomerular properties in the rat offspring. Hypertension 2004; 43:1283–1289.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla Poston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Poston, L., Armitage, J.A., Taylor, P.D. (2006). Developmental Programming of Cardiovascular Dysfunction. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_10

Download citation

Publish with us

Policies and ethics