Skip to main content

Non-Equilibrium Statistical Mechanics of Nematic Liquids

  • Chapter
Modeling of Soft Matter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

The rotational diffusion of a general-shape object (a molecule) in a flow of uniaxial nematic liquid crystal is considered in the molecular field approximation. The full corresponding Fokker-Planck equation is derived, and then reduced to the limit of diffusion of orientational coordinates in a field of uniaxial nematic potential and the flow gradient. The spectrum of orientational relaxation times follows from this analysis. As a second main theme of this work, we derive a complete form of microscopic stress tensor for this molecule from the first principles of momentum balance. Averaging this microscopic stress with the non-equilibrium probability distribution of orientational coordinates produces the anisotropic part of the continuum Leslie-Ericksen viscous stress tensor and the set of viscous coefficients, expressed in terms of molecular parameters, nematic order and temperature. The axially-symmetric limits of long-rod and thin-disk molecular shapes allow comparisons with existing theories and experiments on discotic viscosity. The article concludes with more complicated aspects of non-linear constitutive equations, microscopic theory of rotational friction and the case of non-uniform flow and director gradients.

This work has been partially funded by the Institute for Mathematics and its Applications (IMA), University of Minnesota, and the Cambridge Commonwealth Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Kirkwood, Selected Topics in Statistical Mechanics. Gordon and Breach Science Publication, New York, 1967.

    Google Scholar 

  2. P. Resibois and M. De Leener, Classical Kinetic Theory. Wiley, New York, 1977.

    Google Scholar 

  3. S.A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids. Wiley, New York, 1965.

    Google Scholar 

  4. R.G. Larson, The structure and rheology of complex fluids. Oxford University Press, New York, 1999.

    Google Scholar 

  5. F.M. Leslie, Some constitutive equations for anisotropic fluids. Quart. J. Mech. Appl. Math., 19: 357, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  6. E.J. Hinch and L.G. Leal, The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech., 52: 683, 1972.

    Article  MATH  Google Scholar 

  7. J.L. Ericksen, Anisotropic fluids. Arch. Ration. Mech. Analysis, 4: 231, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.C. Diogo and A.F. Martins, Order parameter and temperature-dependence of the hydrodynamic viscosities of nematic liquid-crystals. J. Physique, 43: 779, 1982.

    Google Scholar 

  9. N. Kuzuu and M. Doi, Constitutive equation for nematic liquid-crystals under weak velocity-gradient derived from a molecular kinetic-equation. J. Phys. Soc. Japan, 52: 3486, 1983.

    Article  Google Scholar 

  10. M.A. Osipov and E.M. Terentjev, Rotational diffusion and rheological properties of liquid-crystals. Z. Naturforsch. (a), 44: 785, 1989.

    Google Scholar 

  11. M. Doi and S.F. Edwards, Theory of Polymer dynamics. Oxford Publisher, Oxford, 1986.

    Google Scholar 

  12. B. Hammouda, J. Mang, and S. Kumar, Shear-induced orientational effects in discotic-liquid-crystal micelles. Phys. Rev. E, 51: 6282, 1995.

    Article  Google Scholar 

  13. Y. Farhoudi and A.D. Rey, Ordering effects in shear flows of discotic polymers. Rheol. Acta, 32: 207, 1993.

    Article  Google Scholar 

  14. S.M. Jogun and C.F. Zukoski, Rheology and microstructure of dense suspensions of plate-shaped colloidal particles. J. Rheol, 43: 847, 1999.

    Article  Google Scholar 

  15. G.B. Jeffrey, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. London, 102A: 161, 1922.

    Article  Google Scholar 

  16. R. Graham, Covariant formulation of non-equilibrium statistical thermodynamics. Z. Physik. B, 26: 397, 1977.

    Article  Google Scholar 

  17. R. Mazo, Brownian Motion, Fluctuations, Dynamics and applications. Oxford University Press, Oxford, 2000.

    Google Scholar 

  18. A.V. Zakharov and scA. Maliniak, Structure and elastic properties of a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation. Eur. Phys. J.E., 4: 435, 2001.

    Article  Google Scholar 

  19. N.G. van Kampen, Stochastic processes in physics and chemistry. North Holland, Armsterdam, 1992.

    Google Scholar 

  20. H. Risken, The Fokker-Planck equation: Methods of solution and application. Springer Verlag, New York, 1989.

    Google Scholar 

  21. P.G. De Gennes and J. Prost, The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993.

    Google Scholar 

  22. H.R. Zeller, Dielectric-relaxation and the glass-transition in nematic liquid-crystals. Phys. Rev. Lett, 48: 334, 1982.

    Article  Google Scholar 

  23. P.C. Martin, P.J Pershan, and J. Swift, New elastic-hydrodynamic theory of liquid crystals. Phys. Rev. Lett., 25: 844, 1970.

    Article  Google Scholar 

  24. I. Haller and J.D. Litster, Temperature dependence of normal modes in a nematic liquid crystal. Phys. Rev. Lett., 25: 1550, 1970.

    Article  Google Scholar 

  25. P. Mazur and S.R. de Groot, Non-equilibrium thermodyanmics. Dover, New York, 1984.

    Google Scholar 

  26. O. Parodi, Stress tensor for a nematic liquid crystal. J. Physique, 31: 581, 1970.

    Article  Google Scholar 

  27. T. Carlsson, Remarks on the flow-alignment of disk like nematics. J. Physique, 44: 909, 1983.

    Article  Google Scholar 

  28. G.E. Volovik, Relationship between molecular shape and hydrodynamics in a nematic substance. Pis’ma Zh. Eksp. Teor. Fiz. (JETP Lett.), 31: 297, 1980.

    Google Scholar 

  29. A. Chrzanowska and K. Sokalski, Microscopic description of nematic liquid crystal viscosity. Phys. Rev. E, 52: 5228, 1995.

    Article  Google Scholar 

  30. R.G. Larson, Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules, 23: 3983, 1990.

    Article  Google Scholar 

  31. Ch. Gähwiller, Temperature dependence of flow alignment in nematic liquid crystals. Phys. Rev. Lett., 28: 1554, 1972.

    Article  Google Scholar 

  32. P. Pieranski and E. Guyon, Two shear-flow regimes in nematic p-n-hexyloxybenzilidene-p′-aminobenzonitrile. Phys. Rev. Lett., 32: 924, 1974.

    Article  Google Scholar 

  33. J. Feng and L.G. Leal, Simulating complex flows of liquid-crystalline polymers using the Doi theory. J. Rheol., 41: 1317, 1997.

    Article  Google Scholar 

  34. I.R. McDonald and J.-P. Hansen, Theory of simple liquids. Academic Press, New York, 1986.

    Google Scholar 

  35. B.W. Van der Meer and G. Vertogen, Molecular physics of Liquid Crystals, edited by G.R. Luckhurst, G.W. Gray. Academic Press, New York, 1979.

    Google Scholar 

  36. S. Chandrasekhar and N.V. Madhusudana, Molecular statistical theory of nematic liquid crystals. Acta Crystallogr., 27: 303, 1971.

    Article  Google Scholar 

  37. B.A. Baron and W.M. Gelbart, Molecular shape and volume effects on the orientational ordering of simple liquid crystals. J. Chem. Phys., 67: 5795, 1977.

    Article  Google Scholar 

  38. R. Eppenga and D. Frenkel, Monte carlo study of the isotropic-nematic transition in a fluid of thin hard disks. Phys. Rev. Lett., 40: 1089, 1982.

    Google Scholar 

  39. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci., 51: 627, 1949.

    Article  Google Scholar 

  40. S.T. Wu and C.S. Wu, Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid-crystals. Phys. Rev. A, 42: 2219, 1990.

    Article  Google Scholar 

  41. T. Tsuji and A.D. Rey, Effect of long range order on sheared liquid crystalline materials. 1. compatibility between tumbling behavior and fixed anchoring. J. Non-Newtonian Fluid Mech., 73: 127, 1997.

    Article  Google Scholar 

  42. B.J. Edwards and A.N. Beris, Order parameter representation of spatial inhomogeneities in polymeric liquid-crystals. J. Rheol., 33: 1189, 1989.

    Article  Google Scholar 

  43. G. Marrucci and F. Greco, The elastic-constants of maier-saupe rodlike molecule nematics. Mol. Cryst. Liq. Cryst., 26: 17, 1991.

    Article  Google Scholar 

  44. A.M. Sonnet, P.L. Maffettone, and E.G. Virga, Continuum theory for nematic liquid crystals with tensorial order. J. Non-Newtonian Fluid Mech., 119: 51, 2004.

    Article  MATH  Google Scholar 

  45. J.P. Straley, Frank elastic constants of the hard-rod liquid crystal. Phys. Rev. A, 8: 2181, 1973.

    Article  Google Scholar 

  46. W.M. Gelbart and A. Ben-Shaul, Molecular theory of curvature elasticity in nematic liquids. J. Chem. Phys., 77: 916, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chan, C.J., Terentjev, E.M. (2005). Non-Equilibrium Statistical Mechanics of Nematic Liquids. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_2

Download citation

Publish with us

Policies and ethics