Skip to main content

The Piezoelectric Outer Hair Cell

  • Chapter
Vertebrate Hair Cells

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DG, Ashworth D, Nelmes B (1999) Fibrillar array in the cell wall of a gliding filamentous cyanobacterium. J Bacteriol 181:884–892.

    PubMed  CAS  Google Scholar 

  • Adler HJ, Belyantseva IA, Merritt RC, Frolenkov GI, Dougherty GW, Kachar B (2003) Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery. Hear Res 184:27–40.

    PubMed  CAS  Google Scholar 

  • Allen JB, Neely ST (1992) Micromechanical models of the cochlea. Physics Today 45:40–47.

    Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347.

    PubMed  CAS  Google Scholar 

  • Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063.

    PubMed  CAS  Google Scholar 

  • Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116.

    PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Albert AD (1990) Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J Biol Chem 265:20727–20730.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1982) Cochlear transduction: an integrative model and review. Hear Res 6:335–360.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1983) Observations on a motile response in isolated outer hair cells. In: Webster WR, Aitken LM (eds), Mechanisms of Hearing. Monash: Monash University Press, pp. 5–10.

    Google Scholar 

  • Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Microsc Pt 3:1401–1406.

    Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1999) How the ear works—nature’s solutions for listening. Volta Rev 99:9–28.

    Google Scholar 

  • Brownell WE (2002) On the origins of outer hair cell electromotility. In: Berlin CI, Hood LJ, Ricci AJ (eds), Hair Cell Micromechanics and Otoacoustic Emissions. Clifton Park, NY: Thomson Delmar Learning, pp. 25–46.

    Google Scholar 

  • Brownell WE, Oghalai JS (2000) Structural basis of outer hair cell motility or where’s the motor? In: Lim D (ed), Cell and Molecular Biology of the Ear. New York: Plenum Press, pp. 69–83.

    Google Scholar 

  • Brownell WE, Popel AS (1998) Electrical and mechanical anatomy of the outer hair cell. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds), Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 89–96.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Ratnanather JT, Popel AS, Zhi M, Sit PS (1994) Labyrinthine lateral walls: cochlear outer hair cell permeability and mechanics. In: Flock A, Ottoson D, Ulfendahl M (eds), Active Hearing. Amsterdam: Elsevier, pp. 167–179.

    Google Scholar 

  • Brownell WE, Spector AA, Raphael RM, Popel AS (2001) Micro-and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng 3:169–94.

    PubMed  CAS  Google Scholar 

  • Burchard RP (1981) Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu Rev Microbiol 35:497–529.

    PubMed  CAS  Google Scholar 

  • Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277.

    PubMed  CAS  Google Scholar 

  • Cady WG (1946) Piezoelectricity. New York: McGraw-Hill.

    Google Scholar 

  • Chambard JM, Ashmore JF (2003) Sugar transport by mammalian members of the SLC26 superfamily of anion-bicarbonate exchangers. J Physiol 550:667–677.

    PubMed  CAS  Google Scholar 

  • Chertoff ME, Brownell WE (1994) Characterization of cochlear outer hair cell turgor. Am J Physiol 266:C467–C479.

    PubMed  CAS  Google Scholar 

  • Chou T, Jaric MV, Siggia ED (1997) Electrostatics of lipid bilayer bending. Biophys J 72:2042–2055.

    PubMed  CAS  Google Scholar 

  • Clarke RJ, Lupfert C (1999) Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 76:2614–2624.

    PubMed  CAS  Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    PubMed  CAS  Google Scholar 

  • Dallos P (1997) Outer hair cells: the inside story. Ann Otol Rhinol Laryngol Suppl 168:16–22.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN (1995a) High-frequency motility of outer hair cells and the cochlear amplifier. Science 267:2006–2009.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN (1995b) High-frequency outer hair cell motility: corrections and addendum [letter]. Science 268:1420–1421.

    PubMed  CAS  Google Scholar 

  • Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111.

    PubMed  CAS  Google Scholar 

  • Dallos P, Hallworth R, Evans BN (1993) Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol 70:299–323.

    PubMed  CAS  Google Scholar 

  • Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.

    PubMed  CAS  Google Scholar 

  • Dan N, Safran SA (1998) Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J 75:1410–1414.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • Dickson MR, Kouprach S, Humphrey BA, Marshall KC (1980) Does gliding motility depend on undulating membranes? Micron 11:381–382.

    Google Scholar 

  • Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653.

    PubMed  CAS  Google Scholar 

  • Ding JP, Salvi RJ, Sachs F (1991) Stretch-activated ion channels in guinea pig outer hair cells. Hear Res 56:19–28.

    PubMed  CAS  Google Scholar 

  • Dong XX, Ospeck M, Iwasa KH (2002) Piezoelectric reciprocal relationship of the membrane motor in the cochlear outer hair cell. Biophys J 82:1254–1259.

    PubMed  CAS  Google Scholar 

  • Dunn RA, Morest DK (1975) Receptor synapses without synaptic ribbons in the cochlea of the cat. Proc Natl Acad Sci USA 72:3599–3603.

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Ã… reveals the molecular basis of anion selectivity. Nature 415:287–294.

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112.

    PubMed  CAS  Google Scholar 

  • Eatock RA (2000) Adaptation in hair cells. Annu Rev Neurosci 23:285–314.

    PubMed  CAS  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422.

    PubMed  CAS  Google Scholar 

  • Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA 96:9727–9732.

    PubMed  CAS  Google Scholar 

  • Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161.

    PubMed  CAS  Google Scholar 

  • Fakler B, Oliver D (2003) Functional properties of prestin—how the motor molecule works work. In: Gummer AW (ed), Biophysics of the Cochlea from Molecules to Model. Singapore: World Scientific, pp. 110–115.

    Google Scholar 

  • Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483.

    PubMed  CAS  Google Scholar 

  • Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA 96:4420–4425.

    PubMed  CAS  Google Scholar 

  • Fukada E (1982) Electrical phenomena in biorheology. Biorheology 19:15–27.

    PubMed  CAS  Google Scholar 

  • Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc Jpn 12:1158–1162.

    Google Scholar 

  • Furness DN, Richardson GP, Russell IJ (1989) Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res 38:95–109.

    PubMed  CAS  Google Scholar 

  • Gale JE, Ashmore JF (1994) Charge displacement induced by rapid stretch in the basolateral membrane of the guinea-pig outer hair cell. Proc R Soc Lond B Biol Sci 255:243–249.

    CAS  Google Scholar 

  • Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B Biol Sci 264:611–621.

    Google Scholar 

  • Géléoc GS, Casalotti SO, Forge A, Ashmore JF (1999) A sugar transporter as a candidate for the outer hair cell motor. Nat Neurosci 2:713–719.

    PubMed  Google Scholar 

  • Gold T (1948) Hearing. II. The physical basis of the action of the cochlea. Proc R Soc Lond B Biol Sci 135:492–498.

    Google Scholar 

  • Grosh K, Zheng J, Zou Y, de Boer E, Nuttall AL (2004) High-frequency electromotile responses in the cochlea. J Acoust Soc Am 115:2178–2184.

    PubMed  Google Scholar 

  • Gulley RL, Reese TS (1977) Regional specialization of the hair cell plasmalemma in the organ of corti. Anat Rec 189:109–123.

    PubMed  CAS  Google Scholar 

  • Halfen LN, Castenholz RW (1970) Gliding in a blue-green alga: a possible mechanism. Nature 225:1163–1165.

    PubMed  CAS  Google Scholar 

  • Hallworth R (1997) Modulation of outer hair cell compliance and force by agents that affect hearing. Hear Res 114:204–212.

    PubMed  CAS  Google Scholar 

  • Hoiczyk E (2000) Gliding motility in cyanobacterial: observations and possible explanations. Arch Microbiol 174:11–17.

    PubMed  CAS  Google Scholar 

  • Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177:2387–2395.

    PubMed  CAS  Google Scholar 

  • Holley MC (1996) Outer hair cell motility. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 386–434.

    Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98.

    PubMed  CAS  Google Scholar 

  • Huang G, Santos-Sacchi J (1994) Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. Proc Natl Acad Sci USA 91:12268–12272.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Logothetis NK (2000) Sensory systems. Curr Opin Neurobiol 10:631–641.

    PubMed  CAS  Google Scholar 

  • Iwasa KH (1993) Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J 65:492–498.

    PubMed  CAS  Google Scholar 

  • Iwasa KH (1994) A membrane motor model for the fast motility of the outer hair cell. J Acoust Soc Am 96:2216–2224.

    PubMed  CAS  Google Scholar 

  • Iwasa KH (2001) A two-state piezoelectric model for outer hair cell motility. Biophys J 81:2495–2506.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Adachi M (1997) Force generation in the outer hair cell of the cochlea. Biophys J 73:546–555.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Li MX, Jia M, Kachar B (1991) Stretch sensitivity of the lateral wall of the auditory outer hair cell from the guinea pig. Neurosci Lett 133:171–174.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420.

    PubMed  CAS  Google Scholar 

  • Kakehata S, Santos-Sacchi J (1996) Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J Neurosci 16:4881–4889.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Kalinec G, Negrini C, Kachar B (1997) Immunolocalization of anion exchanger 2alpha in auditory sensory hair cells. Hear Res 110:141–146.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Zhang M, Urrutia R, Kalinec G (2000) Rho GTPases mediate the regulation of cochlear outer hair cell motility by acetylcholine. J Biol Chem 275:28000–28005.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Ketten DR (1997) Structure and function in whale ears. Bioacoustics 8:103–135.

    Google Scholar 

  • Kim KS, Neu J, Oster G (1998) Curvature-mediated interactions between membrane proteins. Biophys J 75:2274–2291.

    PubMed  CAS  Google Scholar 

  • Korostoff E (1977) Stress generated potentials in bone: relationship to piezoelectricity of collagen. J Biomech 10:41–44.

    PubMed  CAS  Google Scholar 

  • Kossl M, Russell IJ (1995) Basilar membrane resonance in the cochlea of the mustached bat. Proc Natl Acad Sci USA 92:276–279.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Rusch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc R Soc Lond B Biol Sci 249:185–193.

    CAS  Google Scholar 

  • Kuhn B, Vater M (1995) The arrangements of F-actin, tubulin and fodrin in the organ of Corti of the horseshoe bat (Rhinolophus rouxi) and the gerbil (Meriones unguiculatus). Hear Res 84:139–156.

    PubMed  CAS  Google Scholar 

  • Lapidus IR, Berg HC (1982) Gliding motility of Cytophaga sp. strain U67. J Bacteriol 151:384–398.

    PubMed  CAS  Google Scholar 

  • Le Grimellec C, Giocondi MC, Lenoir M, Vater M, Sposito G, Pujol R (2002) Highresolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J Comp Neurol 451:62–69.

    PubMed  Google Scholar 

  • Li Z, Anvari B, Takashima M, Brecht P, Torres JH, Brownell WE (2002) Membrane tether formation from outer hair cells with optical tweezers. Biophys J 82:1386–1395.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1987) Chronic ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:65–88.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    PubMed  CAS  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433.

    PubMed  CAS  Google Scholar 

  • Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, Du LL, Welch KO, Petit C, Smith RJ, Webb BT, Yan D, Arnos KS, Corey D, Dallos P, Nance WE, Chen ZY (2003) Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12:1155–1162.

    PubMed  CAS  Google Scholar 

  • Ludwig J, Oliver D, Frank G, Klocker N, Gummer AW, Fakler B (2001) Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc Natl Acad Sci USA 98:4178–4183.

    PubMed  CAS  Google Scholar 

  • Lue AJ, Brownell WE (1999) Salicylate induced changes in outer hair cell lateral wall stiffness. Hear Res 135:163–168.

    PubMed  CAS  Google Scholar 

  • Lue AJ, Zhao HB, Brownell WE (2001) Chlorpromazine alters outer hair cell electromotility. Otolaryngol Head Neck Surg 125:71–76.

    PubMed  CAS  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533.

    PubMed  CAS  Google Scholar 

  • Marrink SJ, Lindahl E, Edholm O, Mark AE (2001) Simulation of the spontaneous aggregation of phospholipids into bilayers. J Am Chem Soc 123:8638–8639.

    PubMed  CAS  Google Scholar 

  • McBride MJ (2000) Bacterial gliding motility: mechanisms and mysteries. ASM News 66:203–210.

    Google Scholar 

  • Morimoto N, Nygren A, Brownell WE (2000) Quantitative assessment of drug-induced change in OHC lateral wall mechanics. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds), Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 261–267.

    Google Scholar 

  • Morimoto N, Raphael RM, Nygren A, Brownell WE (2002) Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall. Am J Physiol Cell Physiol 282:C1076–1086.

    PubMed  CAS  Google Scholar 

  • Mosbacher J, Langer M, Horber JK, Sachs F (1998) Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol 111:65–74.

    PubMed  CAS  Google Scholar 

  • Mountain DC, Hubbard AE (1994) A piezoelectric model of outer hair cell function. J Acoust Soc Am 95:350–354.

    PubMed  CAS  Google Scholar 

  • Mouritsen OG, Kinnunen PKJ (1996) Role of lipid organization and dynamics for membrane functionality. In: Merz KM Jr, Roux B (eds), Biological Membranes: A Molecular Perspective from Computation and Experiment. Boston: Birkhauser, pp. 463–502.

    Google Scholar 

  • Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells. Hear Res 82:93–99.

    PubMed  CAS  Google Scholar 

  • Nguyen TV, Brownell WE (1998) Contribution of membrane cholesterol to outer hair cell lateral wall stiffness. Otolaryngol Head Neck Surg 119:14–20.

    PubMed  CAS  Google Scholar 

  • Oghalai JS, Patel AA, Nakagawa T, Brownell WE (1998) Fluorescence-imaged microdeformation of the outer hair cell lateral wall. J Neurosci 18:48–58.

    PubMed  CAS  Google Scholar 

  • Oghalai JS, Tran TD, Raphael RM, Nakagawa T, Brownell WE (1999) Transverse and lateral mobility in outer hair cell lateral wall membranes. Hear Res 135:19–28.

    PubMed  CAS  Google Scholar 

  • Oghalai JS, Zhao HB, Kutz JW, Brownell WE (2000) Voltage-and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science 287:658–661.

    PubMed  CAS  Google Scholar 

  • Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343.

    PubMed  CAS  Google Scholar 

  • Ospeck M, Dong XX, Iwasa KH (2003) Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells. Biophys J 84:739–749.

    PubMed  CAS  Google Scholar 

  • Pandit SA, Bostick D, Berkowitz ML (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750.

    PubMed  CAS  Google Scholar 

  • Pate JL (1988) Gliding motility in procaryotic cells. Can J Microbiol 34:459–465.

    CAS  Google Scholar 

  • Petrov AG (1999) The Lyotropic State of Matter: Molecular Physics and Living Matter Physics. Amsterdam: Gordon and Breach.

    Google Scholar 

  • Pitta TP, Sherwood EE, Kobel AM, Berg HC (1997) Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113. J Bacteriol 179:2524–2528.

    PubMed  CAS  Google Scholar 

  • Pollice PA, Brownell WE (1993) Characterization of the outer hair cell’s lateral wall membranes. Hear Res 70:187–196.

    PubMed  CAS  Google Scholar 

  • Pujol R, Carlier E, Devigne C (1979) Significance of presynaptic formations in early stages of cochlear synaptogenesis. Neurosci Lett 15:97–102.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lenoir M, Ladrech S, Tribillac F, Rebillard G (1992) Correlation between the length of outer hair cells and the frequency coding in the cochlea. In: Cazals Y, Horner K, Demany L (eds), Auditory Physiology and Perception: Proceedings of the 9th International Symposium on Hearing, Carcens, France, on June 9–14, 1991, Oxford: Pergamon Press, pp. 45–52.

    Google Scholar 

  • Ramaswamy S, Toner J, Prost J (2000) Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys Rev Lett 84:3494–3497.

    PubMed  CAS  Google Scholar 

  • Raphael RM, Popel AS, Brownell WE (2000a) A membrane bending model of outer hair cell electromotility. Biophys J 78:2844–2862.

    PubMed  CAS  Google Scholar 

  • Raphael RM, Popel AS, Brownell WE (2000b) An orientational motor model of outer hair cell electromotility. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds), Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 344–350.

    Google Scholar 

  • Raphael Y, Athey BD, Wang Y, Lee MK, Altschuler RA (1994) F-actin, tubulin and spectrin in the organ of Corti: comparative distribution in different cell types and mammalian species. Hear Res 76:173–187.

    PubMed  CAS  Google Scholar 

  • Ratnanather JT, Brownell WE, Popel AS (1993) Mechanical properties of the outer hair cell. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds), Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 199–206.

    Google Scholar 

  • Ratnanather JT, Zhi M, Brownell WE, Popel AS (1996) Measurements and a model of the outer hair cell hydraulic conductivity. Hear Res 96:33–40.

    PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002.

    PubMed  CAS  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–21.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Kossl M (1999) Micromechanical responses to tones in the auditory fovea of the greater mustached bat’s cochlea. J Neurophysiol 82:676–686.

    PubMed  CAS  Google Scholar 

  • Rybalchenko V, Santos-Sacchi J (2003) Cl− flux through a non-selective, stretch-sensitive conductance influences the outer hair cellmotor of the guinea-pig. J Physiol 547:873–891.

    PubMed  CAS  Google Scholar 

  • Sachs JN, Woolf TB (2003) Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. J Am Chem Soc 125:8742–8743.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (2003) New tunes from Corti’s organ: the outer hair cell boogie rules. Curr Opin Neurobiol 13:459–468.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Huang GJ, Wu M (1997) Mapping the distribution of outer hair cell voltage-dependent conductances by electrical amputation. Biophys J 73:1424–1429.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Kakehata S, Kikuchi T, Katori Y, Takasaka T (1998) Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neurosci Lett 256:155–158.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Shen W, Zheng J, Dallos P (2001) Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol 531:661–666.

    PubMed  CAS  Google Scholar 

  • Schaeffer SF, Raviola E (1978) Membrane recycling in the cone cell endings of the turtle retina. J Cell Biol 79:802–825.

    PubMed  CAS  Google Scholar 

  • Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol (Stockh) 111:707–718.

    PubMed  CAS  Google Scholar 

  • Siddiqui AM, Burchard RP, Schwarz WH (2001) An undulating surface model for the motility of bacteria gliding on a layer of non-Newtonian slime. Int J nonlinear Mech 36:743–761.

    Google Scholar 

  • Siegel JH, Brownell WE (1981) Presynaptic bodies in outer hair cells of the chinchilla organ of Corti. Brain Res 220:188–193.

    PubMed  CAS  Google Scholar 

  • Siegel JH, Brownell WE (1986) Synaptic and golgi membrane recycling in cochlear hair cells. J Neurocytol 15:311–328.

    PubMed  CAS  Google Scholar 

  • Siskind LJ, Colombini M (2000) The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644.

    PubMed  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277:26796–26803.

    PubMed  CAS  Google Scholar 

  • Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M (2003) Enlargement and contracture of C2-ceramide channels. Biophys J85:1560–1575.

    PubMed  CAS  Google Scholar 

  • Sit PS, Spector AA, Lue AJ, Popel AS, Brownell WE (1997) Micropipette aspiration on the outer hair cell lateral wall. Biophys J 72:2812–2819.

    PubMed  CAS  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Smith CA (1968) Ultrastructure of the organ of Corti. Adv Sci 122:419–433.

    Google Scholar 

  • Snyder KV, Sachs F, Brownell WE (2003) The outer hair cell: a mechanoelectrical and electromechanical sensor/actuator. In: Barth FG, Humphrey JAC, Secomb TW (eds), Sensors and Sensing in Biology and Engineering. Vienna: Springer-Verlag, pp. 71–95.

    Google Scholar 

  • Spector AA, Brownell WE, Popel AS (2003a) Effect of outer hair cell piezoelectricity on high-frequency receptor potentials. J Acoust Soc Am 113:453–461.

    PubMed  Google Scholar 

  • Spector AA, Popel AS, Brownell WE (2003b) Piezoelectric properties enhance outer hair cell high-frequency response. In: Gummer AW, Dalhoff E, Scherer MP (eds), Biophysics of the Cochlea: From Molecule to Model. Singapore: World Scientific, pp. 152–160.

    Google Scholar 

  • Spicer SS, Thomopoulos GN, Schulte BA (1998) Cytologic evidence for mechanisms of K+ transport and genesis of Hensen bodies and subsurface cisternae in outer hair cells. Anat Rec 251:97–113.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1966) The organization of the cochlear receptor. Fortschr Hals Nasen Ohrenheilkd 13:1–227.

    PubMed  CAS  Google Scholar 

  • Sziklai I, He DZ, Dallos P (1996) Effect of acetylcholine and GABA on the transfer function of electromotility in isolated outer hair cells. Hear Res 95:87–99.

    PubMed  CAS  Google Scholar 

  • Takasaka T, Shinkawa H, Hashimoto S, Watanuki K, Kawamoto K (1983) High-voltage electron microscopic study of the inner ear. Technique and preliminary results. Ann Otol Rhinol Laryngol Suppl 101:1–12.

    PubMed  CAS  Google Scholar 

  • Tolomeo JA, Steele CR (1995) Orthotropic piezoelectric properties of the cochlear outer hair cell wall. J Acoust Soc Am 97:3006–3011.

    PubMed  CAS  Google Scholar 

  • Ulfendahl M, Slepecky N (1988) Ultrastructural correlates of inner ear sensory cell shortening. J Submicrosc Cytol Pathol 20:47–51.

    PubMed  CAS  Google Scholar 

  • Vincourt JB, Jullien D, Amalric F, Girard JP (2003) Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. FASEB J 17:890–892.

    PubMed  CAS  Google Scholar 

  • Wada H, Usukura H, Sugawara M, Katori Y, Kakehata S, Ikeda K, Kobayashi T (2003) Relationship between the local stiffness of the outer hair cell along the cell axis and its ultrastructure observed by atomic force microscopy. Hear Res 177:61–70.

    PubMed  Google Scholar 

  • Wainwright SA (1988) Axis and Circumference the Cylindrical Shape of Plants and Animals. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weber T, Gopfert MC, Winter H, Zimmermann U, Kohler H, Meier A, Hendrich O, Rohbock K, Robert D, Knipper M (2003) Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci U S A 100:7690–7695.

    PubMed  CAS  Google Scholar 

  • Weitzel EK, Tasker R, Brownell WE (2003) Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior. J Acoust Soc Am 114:1462–1466.

    PubMed  Google Scholar 

  • Zhang M, Kalinec GM, Urrutia R, Billadeau DD, Kalinec F(2003) ROCK-dependent and ROCK-independent control of cochlear outer hair cell electromotility. J Biol Chem 278:35644–35650.

    PubMed  CAS  Google Scholar 

  • Zhang PC, Keleshian AM, Sachs F(2001) Voltage-induced membrane movement. Nature 413:428–432.

    PubMed  CAS  Google Scholar 

  • Zhao HB, Santos-Sacchi J (1999) Auditory collusion and a coupled couple of outer hair cells. Nature 399:359–362.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    PubMed  CAS  Google Scholar 

  • Zheng J, Long KB, Shen W, Madison LD, Dallos P (2001) Prestin topology: localization of protein epitopes in relation to the plasma membrane. NeuroReport 12:1929–1935.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Brownell, W.E. (2006). The Piezoelectric Outer Hair Cell. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_7

Download citation

Publish with us

Policies and ethics