Skip to main content

Principles of Targeted and Biological Therapies

  • Chapter
Oncology

Abstract

One of the characteristics of the malignant phenotype is the ability of cells to grow in an autonomous manner. Various components of the proliferative and/or survival signaling pathways can become constitutively activated or deregulated in human cancers.1 Many studies have attempted to show that a given molecular change is the key event involved in the pathogenesis of a specific cancer. Such information may not only provide a better understanding of cancer but may allow a novel target to be identified for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2003;2(4):296–313.

    Article  PubMed  CAS  Google Scholar 

  3. Smith C. Drug target identification: a question of biology. Nature (Lond) 2004;428(6979):225–231.

    Article  CAS  Google Scholar 

  4. Johnston SRD. Fulvestrant and the sequential endocrine cascade for advanced breast cancer. Br J Cancer 2004;90:15–18.

    Article  CAS  Google Scholar 

  5. Hynes NE. ErbB2 activation and signal transduction in normal and malignant mammary cells. J Mammary Gland Biol Neoplasia 1996;1(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  6. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7(10):2958–2970.

    PubMed  CAS  Google Scholar 

  7. Burtness BA, Li Y, Flood W, Mattar BI, Forastiere AA. Phase III trial comparing cisplatin (C) + placebo (P) to C + anti-epidermal growth factor antibody (EGF-R) C225 in patients (pts) with metastatic/recurrent head & neck cancer (HNC). Proc Am Soc Clin Oncol 2002;21:67 (abstract 901).

    Google Scholar 

  8. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351(4):337–345.

    Article  PubMed  CAS  Google Scholar 

  9. Gatzemeier U, Rosell R, Ramlau R, et al. Cetuximab (C225) in combination with cisplatin/vinolrelbine vs. cisplatin/vinolrelbine alone in the first-line treatment of patients (pts) with epidermal growth factor receptor (EGFR) positive advanced non-small-cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 2003;22 (abstract).

    Google Scholar 

  10. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235(4785):177–182.

    Article  PubMed  CAS  Google Scholar 

  11. Vogel CL, Cobleigh MA, Tripathy D, et al. First-line Herceptin monotherapy in metastatic breast cancer. Oncology 2001;61(suppl 2):37–42.

    Article  PubMed  CAS  Google Scholar 

  12. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11):783–792.

    Article  PubMed  CAS  Google Scholar 

  13. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344(14):1031–1037.

    Article  PubMed  CAS  Google Scholar 

  14. Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001;61(22):8118–8121.

    PubMed  CAS  Google Scholar 

  15. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21(23):4342–4349.

    Article  PubMed  CAS  Google Scholar 

  16. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347(7):472–480.

    Article  PubMed  CAS  Google Scholar 

  17. Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumors, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003;39(14):2006–2011.

    Article  PubMed  CAS  Google Scholar 

  18. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000;6(5):2053–2063.

    PubMed  CAS  Google Scholar 

  19. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000;6(12):4885–4892.

    PubMed  CAS  Google Scholar 

  20. Kris MG, Natale RB, Herbst RS, et al. A phase II trial of ZD 1839 (Iressa) in advanced non-small lung cancer patients who had failed platinum and docetaxel regimens (IDEAL 2 ). Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  21. Fukuoka M, Yano S, Giaccone G. Final results from a phase II trial of ZD1839 (Iressa) for patients with advanced non-small cell lung cancer (IDEAL 1). Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  22. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol 2004;22(5):777–784.

    Article  PubMed  CAS  Google Scholar 

  23. Albain K, Elledge R, Gradishar WJ, et al. Open-label phase II multicentre trial of ZD1839(Iressa) in patients with advanced breast cancer. Breast Cancer Res Treat 2002;76.

    Google Scholar 

  24. Baselga J, Albanell J, Ruiz R, et al. Phase II and tumour pharmacodynamic study of gefitinib in patients with advanced breast cancer. Proc Am Soc Clin Oncol 2003;22 (abstract).

    Google Scholar 

  25. Robertson JFR, Gutteridge E, Cheung KL, et al. Gefitinib (ZD1839) is active in aquired tamoxifen-resistant oestrogen receptor positive and ER-negative breast cancer: results from a phase II study. Proc Am Soc Clin Oncol 2003:22 (abstract).

    Google Scholar 

  26. Knowlden JM, Hutcheson IR, Jones HE, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 2003;144(3):1032–1044.

    Article  PubMed  CAS  Google Scholar 

  27. Dancey JE, Freidlin B. Targeting epidermal growth factor receptor—are we missing the mark? Lancet 2003;362(9377):62–64.

    Article  PubMed  CAS  Google Scholar 

  28. Perez-Soler R, Chachoua A, Huberman M, et al. A phase II trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor OSI-774, following platinum-based chemotherapy, in patients (pts) with advanced, EGFR-expressing, non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 2001:20.

    Google Scholar 

  29. Herbst RS, Prager D, Hermann R, et al. TRIBUTE—A phase III trial of erlotinib HCL (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small cell lung cancer. Proc Am Assoc Cancer Res 2004.

    Google Scholar 

  30. Gatzemeier U, Pluzanska A, Szczesna A, et al. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and gemcitabine chemotherapy in advanced non-small cell lung cancer. Proc Am Assoc Cancer Res 2004.

    Google Scholar 

  31. Shepherd FA, Pereira J, Ciuleanu TE, et al. A randomised placebo controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. Proc Am Assoc Cancer Res 2004.

    Google Scholar 

  32. Winer E, Cobleigh MA, Dickler M, et al. Phase II multicenter study to evaluate the efficacy and safety of Tarceva (erlotinib, OSI-774) in women with previously treated locally advanced or metastatic breast cancer. Breast Cancer Res Treat 2002;76.

    Google Scholar 

  33. Allen LF, Eiseman IA, Fry DW, Lenehan PF. CI-1033, an irreversible pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer. Semin Oncol 2003;30(5 suppl 16):65–78.

    Article  PubMed  CAS  Google Scholar 

  34. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erb1/2 and AKT pathways. Oncogene 2002;21(41):6255–6263.

    Article  PubMed  CAS  Google Scholar 

  35. Spector NL, Raefsky E, Hurwitz H, et al. Safety, clinical efficacy, and biologic assessments from EGF10004: a randomized phase IB study of GW572016 for patients with metastatic carcinomas overexpressing EGFR or erbB2. Proc Am Soc Clin Oncol 2003:22 (abstract).

    Google Scholar 

  36. Marshall CJ. Cell signalling. Raf gets it together. Nature (Lond) 1996;383(6596):127–128.

    Article  PubMed  CAS  Google Scholar 

  37. Kato K, Cox AD, Hisaka MM, et al. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992;89(14):6403–6407.

    Article  PubMed  CAS  Google Scholar 

  38. Ashar HR, James L, Gray K, et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000;275(39):30451–30457.

    Article  PubMed  CAS  Google Scholar 

  39. Bishop WR, Bond R, Petrin J, et al. Novel tricyclic inhibitors of farnesyl protein transferase. Biochemical characterization and inhibition of Ras modification in transfected Cos cells. J Biol Chem 1995;270(51):30611–30618.

    Article  PubMed  CAS  Google Scholar 

  40. Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 1998;58(21):4947–4956.

    PubMed  CAS  Google Scholar 

  41. Eskens FA, Awada A, Cutler DL, et al. Phase I and pharmacokinetic study of the oral farnesyl transferase inhibitor SCH 66336 given twice daily to patients with advanced solid tumors. J Clin Oncol 2001;19(4):1167–1175.

    PubMed  CAS  Google Scholar 

  42. Adjei AA, Erlichman C, Davis JN, et al. A Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000;60(7):1871–1877.

    PubMed  CAS  Google Scholar 

  43. Shi B, Yaremko B, Hajian G, et al. The farnesyl protein transferase inhibitor SCH66336 synergises with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol 2000;46:387–393.

    Article  PubMed  CAS  Google Scholar 

  44. End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001;61(1):131–137.

    PubMed  CAS  Google Scholar 

  45. Kurzrock R, Kantarjian HM, Cortes JE, et al. Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood 2003;102(13):4527–4534.

    Article  PubMed  CAS  Google Scholar 

  46. Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 2001;97(11):3361–3369.

    Article  PubMed  CAS  Google Scholar 

  47. Cunningham D, De Gramont A, Scheithauer W, et al. Randomized double-blind placebo controlled trial of the farnesyltransferase inhibitor R-115777 (Zanestra) in advanced refractory colorectal cancer. Proc Am Soc Clin Oncol 2002;21.

    Google Scholar 

  48. Van Cutsem E, van de Velde H, Karasek P, A et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 2004;22(8):1430–1438.

    Article  PubMed  CAS  Google Scholar 

  49. Johnston SRD, Head J, Valenti M, Detre S, Dowsett M. Endocrine therapy combined with the farnesyltransferase inhibitor R115777 produces enhanced tumour growth inhibition in hormone-sensitive MCF-7 human breast cancer xenografts in vivo. Breast Cancer Res Treat 2002;76:A245.

    Article  Google Scholar 

  50. Bjornsti MA, Houghton PJ. The tor pathway: a target for cancer therapy. Nat Rev Cancer 2004;4(5):335–348.

    Article  PubMed  CAS  Google Scholar 

  51. Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001;8(3):249–258.

    Article  PubMed  Google Scholar 

  52. Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004;22:2336–2347.

    Article  PubMed  CAS  Google Scholar 

  53. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004;22(5):909–918.

    Article  PubMed  CAS  Google Scholar 

  54. Chan S, Scheulen ME Johnston S, et al. Phase 2 study of two dose levels of CCI-779 in locally advanced or metastatic breast cancer (MBC) failing prior anthracycline and/or taxane regimens. Proc Am Soc Clin Oncol 2003.

    Google Scholar 

  55. O’Donnell A, Faivre S, Judson I, et al. A phase 1 study of the oral mTor inhibitor RAD001 as monotherapy to identify the optimal biological effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc Am Soc Clin Oncol 2003 (abstract).

    Google Scholar 

  56. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature (Lond) 2002;417(6892):949–954.

    Article  PubMed  CAS  Google Scholar 

  57. Strumberg D, Awada A, Piccart M, et al. Final report of the phase I clinical program of the novel raf kinase inhibitor BAY 43-9006 in patients with refractory solid tumors. Proc Am Soc Clin Oncol 2003;22.

    Google Scholar 

  58. Flaherty KT, Lee RJ, Humphries R, O’Dwyer PJ, Schiller JH. Phase I trial of BAY 43-9006 in combination with carboplatin (C) and paclitaxel (P). Proc Am Soc Clin Oncol 2003;22.

    Google Scholar 

  59. LoRusso PM, Adjei AA, Meyer MB, et al. A phase I clinical and pharmacokinetic evaluation of the oral MEK inhibitor, CI-1040, administered for 21 consecutive days, repeated every 4 weeks in patients with advanced cancer. Proc Am Soc Clin Oncol 2002;21.

    Google Scholar 

  60. Waterhouse DM, Rinehart J, Adjei AA, et al. A phase 2 study of an oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, or pancreatic cancer. Proc Am Soc Clin Oncol 2002;22.

    Google Scholar 

  61. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000;92(5):376–387.

    Article  PubMed  CAS  Google Scholar 

  62. Senderowicz AM, Headlee D, Stinson SF, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16(9):2986–2999.

    PubMed  CAS  Google Scholar 

  63. Stadler WM, Vogelzang NJ, Amato R, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 2000;18(2):371–375.

    PubMed  CAS  Google Scholar 

  64. Shapiro GI, Supko JG, Patterson A, et al. A phase II trial of the cyclin-dependent kinase inhibitor flavopiridol in patients with previously untreated stage IV non-small cell lung cancer. Clin Cancer Res 2001;7(6):1590–1599.

    PubMed  CAS  Google Scholar 

  65. Schwartz GK, Ilson D, Saltz L, et al. Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 2001;19(7):1985–1992.

    PubMed  CAS  Google Scholar 

  66. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 1997;57(16):3375–3380.

    PubMed  CAS  Google Scholar 

  67. Gries J-M, Kasimis B, Schwarzenberger P, et al. Phase I study of flavopiridol in non-small cell lung cancer patients after 24-hours IV administration combined with paclitaxel and carboplatin. Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  68. Shah MA, Kortmansky J, Gonen M. A phase I /pharmacological study of weekly sequential irinotecan and flavopiridol. Proc Am Soc Clin Oncol 2002 (abstract).

    Google Scholar 

  69. O’Connor DS, Wall NR, Porter AC, Altieri DC. A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002;2(1):43–54.

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz GK, O’Reilly E, Ilson D, et al. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 2002;20(8):2157–2170.

    Article  PubMed  CAS  Google Scholar 

  71. Punt CJ, Fumoleau P, van de Walle B, Faber MN, Ravic M, Campone M. Phase I and pharmacokinetic study of E7070, a novel sulfonamide, given at a daily times five schedule in patients with solid tumors. A study by the EORTC-early clinical studies group (ECSG). Ann Oncol 2001;12(9):1289–1293.

    Article  PubMed  CAS  Google Scholar 

  72. Raymond E, Bokkel Huinink WW, Taieb J, et al. Phase I and pharmacokinetic study of E7070, a novel chloroindolyl sulfonamide cell-cycle inhibitor, administered as a one-hour infusion every three weeks in patients with advanced cancer. J Clin Oncol 2002;20(16):3508–3521.

    Article  PubMed  CAS  Google Scholar 

  73. Talbot D, Norbury C, Slade M, et al. A Phase II and pharmacodynamic study of E7070 in patients with non-small cell lung cancer (NSCLC) who have failed platinum-based chemotherapy. Proc Am Soc Clin Oncol 2002;21.

    Google Scholar 

  74. Mainwaring PN, Van Cutsem E, Van Laethem J-L, et al. A multicentre randomised phase II study of E7070 in patients with colorectal cancer who have failed 5-fluorouracil-based chemotherapy. Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  75. Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004;4(5):349–360.

    Article  PubMed  CAS  Google Scholar 

  76. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348(26):2609–2617.

    Article  PubMed  CAS  Google Scholar 

  77. Berenson J, Jagannath S, Barlogie B, et al. Experience with long-term therapy using the proteosome inhibitor, bortezomib, in advanced multiple myelome (MM). Proc Am Soc Clin Oncol 2002;22 (abstract).

    Google Scholar 

  78. Orlowski RZ. Phase I study of the proteosome inhibitor bortezomib and pegylated doxorubicin in patients with refractory haematological malignanacies. Blood 2003;102 (abstract).

    Google Scholar 

  79. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000;92(15):1210–1216.

    Article  PubMed  CAS  Google Scholar 

  80. Saito A, Yamashita T, Mariko Y, et al. A synthetic inhibitor of histone deacetylase, MS-27-275 with marked in vivo antitumour activity against human tumors. Proc Natl Acad Sci USA 1999;96:4592–4597 (abstract).

    Article  PubMed  CAS  Google Scholar 

  81. Wall NR, O’Connor DS, Plescia J, Pommier Y, Altieri DC. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 2003;63(1):230–235.

    PubMed  CAS  Google Scholar 

  82. Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003;4(12):721–729.

    Article  PubMed  CAS  Google Scholar 

  83. Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000;18(9):1812–1823.

    PubMed  CAS  Google Scholar 

  84. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274(5286):373–376.

    Article  PubMed  CAS  Google Scholar 

  85. Hall AR, Dix BR, O’Carroll SJ, Braithwaite AW. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998;4(9):1068–1072.

    Article  PubMed  CAS  Google Scholar 

  86. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000;6(8):879–885.

    Article  PubMed  CAS  Google Scholar 

  87. Reid TR, Sze D, Galanis E, Abbruzzese JL, Kirn DH, Freeman S. Intra-arterial administration of a replication-selective adenovirus ONYX-015 in patients with colorectal carcinoma metastatic to the liver: safety, feasibility and biological activity. Proc Am Soc Clin Oncol 2003 (abstract).

    Google Scholar 

  88. Vasey PA, Shulman LN, Campos S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol 2002;20(6):1562–1569.

    Article  PubMed  CAS  Google Scholar 

  89. Clayman GL, el Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998;16(6):2221–2232.

    PubMed  CAS  Google Scholar 

  90. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303(5659):844–848.

    Article  PubMed  CAS  Google Scholar 

  91. Davies R, Frydenberg M, Tulluch A, Kelly G. Interim results of a phase Ib/IIa study of a oral phenoxodiol in patients with late-stage, hormone-refractory prostate cancer. Proc Am Assoc Cancer Res 2004;LB-214 (abstract).

    Google Scholar 

  92. Rutherford T, O’Malley D, Makkenchery A, et al. Phenoxodiol phase Ib/II study in patients with recurrent ovarian cancer that are resistant to > or = second line chemotherapy. Proc Am Assoc Cancer Res 2004;4457 (abstract).

    Google Scholar 

  93. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182–1186.

    Article  PubMed  CAS  Google Scholar 

  94. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  95. Weidner N. Angiogenesis in breast cancer. Cancer Treat Res 1996;83:265–301.

    PubMed  CAS  Google Scholar 

  96. Sharma RA, Marriot JB, Clarke I, et al. Tolerability of the novel oral thalidomide analog CC-5013 demonstrating extensive immune activation and clinical response. Proc Am Soc Clin Oncol 2003 (abstract).

    Google Scholar 

  97. Bhargava P, Marshall JL, Rizvi N, et al. A Phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer. Clin Cancer Res 1999;5(8):1989–1995.

    PubMed  CAS  Google Scholar 

  98. Herbst RS, Madden TL, Tran HT, et al. Safety and pharmacokinetic effects of TNP-470, an angiogenesis inhibitor, combined with paclitaxel in patients with solid tumors: evidence for activity in non-small-cell lung cancer. J Clin Oncol 2002;20(22):4440–4447.

    Article  PubMed  CAS  Google Scholar 

  99. Kulke M, Bergsland E, Ryan DP, et al. A phase II, open-label, safety, pharmacokinetic, and efficacy study of recombinant endostatin in patients with advanced neuroendocrine tumours. Proc Am Soc Clin Oncol 2003 (abstract).

    Google Scholar 

  100. Voest EE, Beerepoot LV, Groenewegen G, et al. Phase I trial of recombinant human angiostatin by twice-daily subcutaneous injection in patients with advanced cancer. Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  101. Eppenberger U, Kueng W, Schlaeppi JM, et al. Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 1998;16(9):3129–3136.

    PubMed  CAS  Google Scholar 

  102. Weng DE, Weiss P, Kellackey C, et al. Angiozyme Pharmacokinetic and safety results: a phase I/II study in patients with refractory solid tumours. Proc Am Soc Clin Oncol 2001;20 (abstract).

    Google Scholar 

  103. Kim KJ, Li B, Houck K, Winer J, Ferrara N. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 1992;7(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  104. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335–2342.

    Article  PubMed  CAS  Google Scholar 

  105. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004;22(11):2184–2191.

    Article  PubMed  CAS  Google Scholar 

  106. Raymond E, Faivre S, Vera C, et al. Final results of a phase I and pharmacokinetic study of SU11248, a novel multi-target tyrosine kinase, in patients with advanced cancers. Proc Am Soc Clin Oncol 2003;22 (abstract).

    Google Scholar 

  107. Steward WP, Thomas AL, Morgan B, et al. Extended phase I study of the oral vascular endothelial growth factor (VEGF) receptor inhibitor PTK787/ZK 222584 in combination with oxaliplatin/5-fluorouracil (5-FU)/leucovorin as first line treatment for metastatic colorectal cancer. Proc Am Soc Clin Oncol 2003;22 (abstract).

    Google Scholar 

  108. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000;10(6):415–433.

    Article  PubMed  CAS  Google Scholar 

  109. Yonemura Y, Endo Y, Fujita H, et al. Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J Exp Clin Cancer Res 2001;20(2):205–212.

    PubMed  CAS  Google Scholar 

  110. Silletti S, Kessler T, Goldberg J, Boger DL, Cheresh DA. Disruption of matrix metalloproteinase 2 binding to integrin alpha v beta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA 2001;98(1):119–124.

    Article  PubMed  CAS  Google Scholar 

  111. Eskens FA, Dumez H, Hoekstra R, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003;39(7):917–926.

    Article  PubMed  CAS  Google Scholar 

  112. Bramhall SR, Hallissey MT, Whiting J, et al. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br J Cancer 2002;86(12):1864–1870.

    Article  PubMed  CAS  Google Scholar 

  113. Rowinsky EK. Challenges of developing therapeutics that target signal transduction in patients with gynecologic and other malignancies. J Clin Oncol 2003;21(suppl 10):175–186.

    Article  Google Scholar 

  114. Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ, Workman P. Anticancer agents targeting signaling molecules and cancer cell environment: challenges for drug development? J Natl Cancer Inst 1999;91(15):1281–1287.

    Article  PubMed  CAS  Google Scholar 

  115. Janicek MJ, Janicek MR, Merriam P, et al. Imaging responses to Imatinib mesylate (Gleevec, STI571) in gastrointestinal stromal tumors (GIST): vascular perfusion patterns with Doppler ultrasound (DUS) and dynamic infrared imaging (DIRI). Proc Am Soc Clin Oncol 2002;21 (abstract).

    Google Scholar 

  116. Eisenhauer EA. Phase I and II trials of novel anti-cancer agents: endpoints, efficacy and existentialism. The Michel Clavel Lecture, held at the 10th NCI-EORTC Conference on New Drugs in Cancer Therapy, Amsterdam, 16–19 June 1998. Ann Oncol 1998;9(10):1047–1052.

    Article  PubMed  CAS  Google Scholar 

  117. Dent S, Zee B, Dancey J, Hanauske A, Wanders J, Eisenhauer E. Application of a new multinomial phase II stopping rule using response and early progression. J Clin Oncol 2001;19(3):785–791.

    PubMed  CAS  Google Scholar 

  118. Kopec JA, Abrahamowicz M, Esdaile JM. Randomized discontinuation trials: utility and efficiency. J Clin Epidemiol 1993;46(9):959–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Johnston, S.R., Chua, S., Swanton, C. (2006). Principles of Targeted and Biological Therapies. In: Chang, A.E., et al. Oncology. Springer, New York, NY. https://doi.org/10.1007/0-387-31056-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-31056-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24291-0

  • Online ISBN: 978-0-387-31056-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics