Skip to main content

The Mitochondrial Protein Import Machinery

  • Chapter
Protein Movement Across Membranes

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 621 Accesses

Abstract

Mitochondria are surrounded by a double-membrane system that defines four intra-organelle compartments: the outer membrane, the inner membrane, the intermembrane space and the matrix. Hundreds of nuclear-encoded mitochondrial proteins are synthesized as precursor proteins in the cytosol and have to be targeted to and imported into the mitochondria. To facilitate this import process, precursor proteins contain targeting and sorting sequences which are recognized and decoded by mitochondrial translocation machineries. This chapter describes the mechanisms by which mitochondrial precursor proteins are targeted to the mitochondria, and sorted into the correct sub-mitochondrial compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283:1482–1488.

    PubMed  CAS  Google Scholar 

  2. Sickmann A, Reinders J, Wagner Y et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 2003; 100:13207–13212.

    PubMed  CAS  Google Scholar 

  3. Taylor SW, Fahy E, Zhang B et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 2003; 21:281–286.

    PubMed  CAS  Google Scholar 

  4. Mori M, Terada K. Mitochondrial protein import in animals. Biochim Biophys Acta 1998; 1403:12–27.

    PubMed  CAS  Google Scholar 

  5. Bauer MF, Rothbauer U, Muhlenbein N et al. The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom. FEBS Lett 1999; 464:41–47.

    PubMed  CAS  Google Scholar 

  6. Braun HP, Schmitz UK. The protein-import apparatus of plant mitochondria. Planta 1999; 209:267–274.

    PubMed  CAS  Google Scholar 

  7. Hoogenraad NJ, Ward LA, Ryan MT. Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta 2002; 1592:97–105.

    PubMed  CAS  Google Scholar 

  8. Neupert W. Protein import into mitochondria. Annu Rev Biochem 1997; 66:863–917.

    PubMed  CAS  Google Scholar 

  9. Fujiki M, Verner K. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast: Evidence for cotranslational import in vivo. J Biol Chem 1993; 268:1914–1920.

    PubMed  CAS  Google Scholar 

  10. Kellems RE, Allison VF, Butow RA. Cytoplasmic type 80S ribosomes associated with yeast mitochondria. J Cell Biol 1975; 65:1–14.

    PubMed  CAS  Google Scholar 

  11. Beddoe T, Lithgow T. Delivery of nascent polypeptides to the mitochondrial surface. Biochim Biophys Acta 2002; 1592:35–39.

    PubMed  CAS  Google Scholar 

  12. Reid GA, Schatz G. Import of proteins into mitochondria. Yeast cells grown in the presence of carbonyl cyanide-m-chlorophenyl-hydrazone accumulate massive amounts of some mitochondrial precursor polypeptides. J Biol Chem 1982; 257:13056–13061.

    PubMed  CAS  Google Scholar 

  13. Young JC, Hoogenraad NJ, Hartl F-U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003; 112:41–50.

    PubMed  CAS  Google Scholar 

  14. Harkness TA, Nargang FE, van der Klei I et al. A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria. J Cell Biol 1994; 124:637–648.

    PubMed  CAS  Google Scholar 

  15. Lithgow T, Glick BS, Schatz G. The protein import receptor of mitochondria. Trend Biochem Sci 1995; 20:98–101.

    PubMed  CAS  Google Scholar 

  16. Schlossmann J, Dietmeier K, Pfanner N et al. Specific recognition of mitochondrial preproteins by the cytosolic domain of the import receptor MOM72. J Biol Chem 1994; 269:11893–11901.

    PubMed  CAS  Google Scholar 

  17. Brix J, Rudiger S, Bukau B et al. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a noncleavable preprotein. J Biol Chem 1999; 274:16522–16530.

    PubMed  CAS  Google Scholar 

  18. Wiedemann N, Pfanner N, Ryan MT. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 2001; 20:951–960.

    PubMed  CAS  Google Scholar 

  19. Dekker PJT, Ryan MT, Brix J et al. Preprotein translocase of the outer mitochondrial membrane: Molecular dissection and assembly of the general import pore complex. Mol Cell Biol 1998; 18:6515–6524.

    PubMed  CAS  Google Scholar 

  20. Künkele K-P, Heins S, Dembowski M et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 1998; 93:1009–1019.

    PubMed  Google Scholar 

  21. Ahting U, Thun C, Hegerl R et al. The TOM core complex: The general protein import pore of the outer membrane of mitochondria. J Cell Biol 1999; 147:959–968.

    PubMed  CAS  Google Scholar 

  22. Rapaport D. Biogenesis of the mitochondrial TOM complex. Trends Biochem Sci 2002; 26:191–197.

    Google Scholar 

  23. Rapaport D, Neupert W, Lill R. Mitochondrial protein import. Tom40 plays a major role in targeting and translocation of preproteins by forming a specific binding site for the presequence. J Biol Chem 1997; 272:18725–18731.

    PubMed  CAS  Google Scholar 

  24. Hill K, Model K, Ryan MT et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 1998; 395:516–521.

    PubMed  CAS  Google Scholar 

  25. Stan T, Ahting U, Dembowski M et al. Recognition of preproteins by the isolated TOM complex of mitochondria. EMBO J 2000; 19:4895–4902.

    PubMed  CAS  Google Scholar 

  26. Ahting U, Thieffry M, Engelhardt H et al. Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J Cell Biol 2001; 153:1151–1160.

    PubMed  CAS  Google Scholar 

  27. Dietmeier K, Hönlinger A, Bömer U et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 1997; 388:195–200.

    PubMed  CAS  Google Scholar 

  28. van Wilpe S, Ryan MT, Hill K et al. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 1999; 401:485–489.

    PubMed  Google Scholar 

  29. Habib SJ, Vasiljev A, Neupert W et al. Multiple functions of tail-anchor domains of mitochondrial outer membrane proteins. FEBS Lett 2003; 555:511–515.

    PubMed  CAS  Google Scholar 

  30. Alconada A, Kübrich M, Moczko M et al. The mitochondrial receptor complex: The small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol Cell Biol 1995; 15:6196–6205.

    PubMed  CAS  Google Scholar 

  31. Hönlinger A, Bömer U, Alconada A et al. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J 1996; 15:2125–2137.

    PubMed  Google Scholar 

  32. Dembowski M, Künkele K-P, Nargang FE et al. Assembly of Tom6 and Tom7 into the TOM core complex of Neurospora crassa. J Biol Chem 2001; 276:17679–17685.

    PubMed  CAS  Google Scholar 

  33. Abe Y, Shodai T, Muto T et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 2000; 100:551–560.

    PubMed  CAS  Google Scholar 

  34. Hönlinger A, Kübrich M, Moczko M et al. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol Cell Biol 1995; 15:3382–3389.

    PubMed  Google Scholar 

  35. Mayer A, Nargang FE, Neupert W et al. MOM22 is a receptor for mitochondrial targeting sequences and cooperates with MOM19. EMBO J 1995; 14:4204–4211.

    PubMed  CAS  Google Scholar 

  36. Kanamori T, Nishikawa S-I, Nakai M et al. Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane. Proc Natl Acad Sci USA 1999; 96:3634–3639.

    PubMed  CAS  Google Scholar 

  37. Mayer A, Neupert W, Lill R. Mitochondrial protein import: Reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding. Cell 1995; 80:127–137.

    PubMed  CAS  Google Scholar 

  38. Rapaport D, Mayer A, Neupert W et al. Cis and trans sites of the TOM complex in unfolding and initial translocation of preproteins. J Biol Chem 1998; 273:8806–8813.

    PubMed  CAS  Google Scholar 

  39. Esaki M, Kanamori T, Nishikawa S et al. Tom40 protein import channel binds to nonnative proteins and prevents their aggregation. Nat Struct Biol 2003; 10:988–994.

    PubMed  CAS  Google Scholar 

  40. Bolliger L, Junne T, Schatz G et al. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J 1995; 14:6318–6326.

    PubMed  CAS  Google Scholar 

  41. Moczko M, Bömer U, Kübrich M et al. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol Cell Biol 1997; 17:6574–6584.

    PubMed  CAS  Google Scholar 

  42. Rapaport D, Künkele K-P, Dembowski M et al. Dynamics of the TOM complex of mitochondria during binding and translocation of preproteins. Mol Cell Biol 1998; 18:5256–5262.

    PubMed  CAS  Google Scholar 

  43. Gabriel K, Buchanan SK, Lithgow T. The alpha and beta: Protein translocation across mitochondrial and plastid outer membranes. Trends Biochem Sci 2001; 26:36–40.

    PubMed  CAS  Google Scholar 

  44. Rapaport D. How to find the right organelle-targeting signals in mitochondrial outer membrane proteins. EMBO Rep 2003; 4:948–952.

    PubMed  CAS  Google Scholar 

  45. Tamm LK, Arora A, Kleinschmidt JH. Structure and assembly of β-barrel membrane proteins. J Biol Chem 2001; 276:32399–32402.

    PubMed  CAS  Google Scholar 

  46. Schleiff E, Eichacker LA, Eckart K et al. Prediction of the plant beta-barrel proteome: A case study of the chloroplast outer envelope. Protein Sci 2003; 12:748–759.

    PubMed  CAS  Google Scholar 

  47. Wimley WC. The versatile β-barrel membrane protein. Curr Opin Struct Biol 2003; 13:404–411.

    PubMed  CAS  Google Scholar 

  48. Johnson AE, Jensen RE. Barreling through the membrane. Nat Struct Mol Biol 2004; 11:113–114.

    PubMed  CAS  Google Scholar 

  49. Rapaport D, Neupert W. Biogenesis of Tom40, core component of the TOM complex of mitochondria. J Cell Biol 1999; 146:321–331.

    PubMed  CAS  Google Scholar 

  50. Krimmer T, Rapaport D, Ryan MT et al. Biogenesis of the major mitochondrial outer membrane protein porin involves a complex import pathway via receptors and the general import pore. J Cell Biol 2001; 152:289–300.

    PubMed  CAS  Google Scholar 

  51. Model K, Meisinger C, Prinz T et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol 2001; 8:361–370.

    PubMed  CAS  Google Scholar 

  52. Schleiff E, Silvius JR, Shore GC. Direct membrane insertion of voltage-dependent anion-selective channel protein catalyzed by mitochondrial Tom20. J Cell Biol 1999; 145:973–978.

    PubMed  CAS  Google Scholar 

  53. Kozjak V, Wiedemann N, Milenkovic D et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 2003; 278:48520–48523.

    PubMed  CAS  Google Scholar 

  54. Paschen SA, Waizenegger T, Stan T et al. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 2003; 426:862–866.

    PubMed  CAS  Google Scholar 

  55. Wiedemann N, Kozjak V, Chacinska A et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 2003; 424:565–571.

    PubMed  CAS  Google Scholar 

  56. Wiedemann N, Truscott KN, Pfannschmidt S et al. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: Intermembrane space components are involved in an early stage of the assembly pathway. J Biol Chem 2004; 279:18188–18194.

    PubMed  CAS  Google Scholar 

  57. Hoppins SC, Nargang FE. The Tim8-Tim13 complex of Neurospora crassa functions in the as sembly of proteins into both mitochondrial membranes. J Biol Chem 2004; 279:12396–12405.

    PubMed  CAS  Google Scholar 

  58. Gentle I, Kipros G, Beech P et al. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 2004; 164:19–24.

    PubMed  CAS  Google Scholar 

  59. Voulhoux R, Bos MP, Geurtsen J et al. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 2003; 299:262–265.

    PubMed  CAS  Google Scholar 

  60. Waizenegger T, Habib SJ, Lech M et al. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. EMBO Rep 2004; 7:704–709.

    Google Scholar 

  61. Milenkovic D, Kozjak V, Wiedemann N et al. Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J Biol Chem 2004; 279:22781–22785.

    PubMed  CAS  Google Scholar 

  62. Yamamoto H, Esaki M, Kanamori T et al. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 2002; 111:519–528.

    PubMed  CAS  Google Scholar 

  63. Geissler A, Chacinska A, Truscott KN et al. The mitochondrial presequence translocase: An essential role of Tim50 in directing preproteins to the import channel. Cell 2002; 111:507–518.

    PubMed  CAS  Google Scholar 

  64. Mokranjac D, Paschen SA, Kozany C et al. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 2003; 22:816–825.

    PubMed  CAS  Google Scholar 

  65. Bauer MF, Sirrenberg C, Neupert W et al. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 1996; 87:33–41.

    PubMed  CAS  Google Scholar 

  66. Truscott KN, Kovermann P, Geissler A et al. A presequence-and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 2001; 8:1074–1082.

    PubMed  CAS  Google Scholar 

  67. Huang S, Ratliff KS, Matouschek A. Protein unfolding by the mitochondrial membrane potential. Nat Struct Biol 2002; 9:301–307.

    PubMed  CAS  Google Scholar 

  68. Glick BS, Brandt A, Cunningham K et al. Cytochromes cl and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 1992; 69:809–822.

    PubMed  CAS  Google Scholar 

  69. Hahne K, Haucke V, Ramage L et al. Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell 1994;79:829–839.

    PubMed  CAS  Google Scholar 

  70. McQuibban GA, Saurya S, Freeman M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 2003; 423:537–541.

    PubMed  CAS  Google Scholar 

  71. Herlan M, Bornhovd C, Hell K et al. Alternative topogenesis of Mgml and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol 2004; 165:167–173.

    PubMed  CAS  Google Scholar 

  72. Matouschek A, Pfanner N, Voos W. Protein unfolding by mitochondria. The Hsp70 import motor. EMBO Rep 2000; 1:404–410.

    PubMed  CAS  Google Scholar 

  73. Neupert W, Brunner M. The protein import motor of mitochondria. Nat Rev Mol Cell Biol 2002; 3:555–565.

    PubMed  CAS  Google Scholar 

  74. Pfanner N, Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2001; 2:339–349.

    PubMed  CAS  Google Scholar 

  75. Mokranjac D, Sichting M, Neupert W et al. Tim 14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 2003; 22:4945–4956.

    PubMed  CAS  Google Scholar 

  76. Truscott KN, Voos W, Frazier AE et al. A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 2003; 163:707–713.

    PubMed  CAS  Google Scholar 

  77. Kozany C, Mokranjac D, Sichting M et al. The J domain-related cochaperone Tim 16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 2004; 11:234–241.

    PubMed  CAS  Google Scholar 

  78. Frazier AE, Dudek J, Guiard B et al. Paml6 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 2004; 11:226–233.

    PubMed  CAS  Google Scholar 

  79. Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta 2002;1592:63–77.

    PubMed  CAS  Google Scholar 

  80. Koehler CM, Merchant S, Schatz G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem Sci 1999; 24:428–432.

    PubMed  CAS  Google Scholar 

  81. Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane-a guided tour. J Mol Biol 2003; 326:639–657.

    PubMed  CAS  Google Scholar 

  82. Komiya T, Rospert S, Schatz G et al. Binding of mitochondrial precursor proteins to the cytoplasmic domains of the import receptors Tom70 and Tom20 is determined by cytoplasmic chaperones. EMBO J 1997; 16:4267–4275.

    PubMed  CAS  Google Scholar 

  83. Endres M, Neupert W, Brunner M. Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex. EMBO J 1999; 18:3214–3221.

    PubMed  CAS  Google Scholar 

  84. Curran SP, Leuenberger D, Schmidt E et al. The role of the Tim8p-Timl3p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol 2002;158:1017–1027.

    PubMed  CAS  Google Scholar 

  85. Stan T, Brix J, Schneider-Mergener J et al. Mitochondrial protein import: Recognition of internal import signals of BCS1 by the TOM complex. Mol Cell Biol 2003; 23:2239–2250.

    PubMed  CAS  Google Scholar 

  86. Luciano P, Vial S, Vergnolle MA et al. Functional reconstitution of the import of the yeast ADP/ATP carrier mediated by the TIM10 complex. EMBO J 2001; 20:4099–4106.

    PubMed  CAS  Google Scholar 

  87. Curran SP, Leuenberger D, Oppliger W et al. The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J 2002; 21:942–953.

    PubMed  CAS  Google Scholar 

  88. Vasiljev A, Ahting U, Nargang FE et al. Reconstituted TOM core complex and Tim9/Timl0 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol Biol Cell 2004; 15:1445–1458.

    PubMed  CAS  Google Scholar 

  89. Koehler CM, Leuenberger D, Merchant S et al. Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci USA 1999; 96:2141–2146.

    PubMed  CAS  Google Scholar 

  90. Kurz M, Martin H, Rassow J et al. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: Differential targeting mechanisms and crossing over with the main import pathway. Mol Biol Cell 1999; 10:2461–2474.

    PubMed  CAS  Google Scholar 

  91. Jensen RE, Dunn CD. Protein import into and across the mitochondrial inner membrane: Role of the TIM23 and TIM22 translocons. Biochim Biophys Acta 2002; 1592:25–34.

    PubMed  CAS  Google Scholar 

  92. Davis AJ, Sepuri NB, Holder J et al. Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. J Cell Biol 2000; 150:1271–1282.

    PubMed  CAS  Google Scholar 

  93. Paschen SA, Rothbauer U, Kaldi K et al. The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J 2000; 19:6392–6400.

    PubMed  CAS  Google Scholar 

  94. Koehler CM, Jarosch E, Tokatlidis K et al. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 1998; 279:369–373.

    PubMed  CAS  Google Scholar 

  95. Koehler CM, Merchant S, Oppliger W et al. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J 1998; 17:6477–6486.

    PubMed  CAS  Google Scholar 

  96. Sirrenberg C, Endres M, Fölsch H et al. Zinc finger-like proteins Timl0/Mrsllp and Tim 12/Mrs5p mediating import of carrier proteins into mitochondria. Nature 1998; 391:912–915.

    PubMed  CAS  Google Scholar 

  97. Adam A, Endres M, Sirrenberg C et al. Tim9, a new component of the TIM22.54 translocase in mitochondria. EMBO J 1999; 18:313–319.

    PubMed  CAS  Google Scholar 

  98. Tokatlidis K, Schatz G. Biogenesis of mitochondrial inner membrane proteins. J Biol Chem 1999;274:35285–35288.

    PubMed  CAS  Google Scholar 

  99. Rehling P, Model K, Brandner K et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 2003; 299:1747–1751.

    PubMed  CAS  Google Scholar 

  100. Kuhn A, Stuart R, Henry R et al. The Alb 3/Oxal/YidC protein family: Membrane-localized chaperones facilitating membrane protein insertion? Trends Cell Biol 2003; 13:510–516.

    PubMed  CAS  Google Scholar 

  101. Hell K, Herrmann JM, Pratje E et al. Oxalp, an essential component of the novel N-tail protein export machinery in mitochondria. Proc Natl Acad Sci USA 1998; 95:2250–2255.

    PubMed  CAS  Google Scholar 

  102. Hell K, Neupert W, Stuart RA. Oxalp acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 2001; 20:1281–1288.

    PubMed  CAS  Google Scholar 

  103. Szyrach G, Ott M, Bonnefoy N et al. Ribosome binding to the Oxal complex facilitates cotranslational protein insertion in mitochondria. EMBO J 2003; 22:6448–6457.

    PubMed  CAS  Google Scholar 

  104. Jia L, Dienhart M, Schramp M et al. Yeast Oxal interacts with mitochondrial ribosomes: The importance of the C-terminal region of Oxal. EMBO J 2003; 22:6438–6447.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Rapaport, D. (2005). The Mitochondrial Protein Import Machinery. In: Protein Movement Across Membranes. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30871-7_9

Download citation

Publish with us

Policies and ethics