Skip to main content

Structural Packing and Covering Problems

  • Chapter
Research Problems in Discrete Geometry
  • 2021 Accesses

Abstract

Let k be a natural number and \( D \subseteq \mathbb{R}^d \) an arbitrary domain. An arrangement \( \mathcal{C} \) of convex bodies in ℝd is said to form a k-fold covering of D if every point of D belongs to at least k members of \( \mathcal{C} \), and it is called a k-fold packing if every point belongs to the interior of at most k members of \( \mathcal{C} \). Thus, the usual coverings and packings are the same as the 1-fold (or simple) coverings and packings, respectively. The survey paper of G. Fejes Tóth [FeT83] gives an almost complete account of the known results about the thinnest k-fold coverings and densest k-fold packings of ℝd with congruent copies of a convex body \( \mathcal{C} \). These questions are usually quite difficult, and they often require somewhat technical extensions of the methods developed for the case k = 1 (see, e.g., Few [Fe64], [Fe67], [Ga96], [Bl99].) G. Fejes Tóth [FeT76], [FeT77], [FeT79] generalized the concept of Voronoi-Dirichlet cell decomposition to show that the densities δ k(B 2) and θ k(B 2) of the densest k-fold packing and thinnest k-fold covering of the plane with unit circles (disks) satisfy

$$ \begin{gathered} \delta ^k (B^2 ) \leqslant \frac{\pi } {6}\cot \frac{\pi } {{6k}} < k - \frac{{\pi ^2 }} {{108k}}, \hfill \\ \theta ^k (B^2 ) \geqslant \frac{\pi } {3}\csc \frac{\pi } {{3k}} > k + \frac{{\pi ^2 }} {{54k}}, \hfill \\ \end{gathered} $$

for every k. Improving some earlier results of Cohn [Co76] and Groemer [Gr86], Bolle [Bo84], [Bo89] and Huxley [Hu93] showed that for the corresponding densities δ k L (B 2) and θ k L (B 2), restricted to lattice packings and coverings, respectively, we have

$$ \begin{gathered} k - ck^{\tfrac{{23}} {{73 + \varepsilon }}} \leqslant \delta _L^k (B^2 ) \leqslant k - c'k^{\tfrac{1} {4}} , \hfill \\ k + c'k^{\tfrac{1} {4}} \leqslant \theta _L^k (B^2 ) \leqslant k + ck^{\tfrac{{23}} {{73 + \varepsilon }}} , \hfill \\ \end{gathered} $$

for any ε > 0 and for suitable c, c′ > 0 depending only on ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bielecki: Problem 56, Colloq. Math.1 (1948) 333–334.

    Google Scholar 

  2. V.M. Blinovsky: Multiple packing of the Euclidean sphere, IEEE Trans. Inform. Theory45 (1999) 1334–1337.

    MATH  MathSciNet  Google Scholar 

  3. W.J. Blundon: Some lower bounds for the density of multiple packing, Canad. Math. Bull.7 (1964) 565–572.

    MATH  MathSciNet  Google Scholar 

  4. W.J. Blundon: Multiple packing of circles in the plane, J. London Math. Soc.38 (1963) 176–182.

    MATH  MathSciNet  Google Scholar 

  5. U. Bolle: On the density of multiple packings and coverings of convex discs, Studia Sci. Math. Hung.24 (1989) 119–126.

    MATH  MathSciNet  Google Scholar 

  6. U. Bolle: Über die Dichte mehrfacher gitterförmiger Kreisanordnungen in der Ebene, Studia Sci. Math. Hung.19 (1984) 275–284.

    MATH  MathSciNet  Google Scholar 

  7. M. Cohn: Multiple lattice covering of space, Proc. London Math. Soc. 3. Ser. 32 (1976) 117–132.

    MATH  MathSciNet  Google Scholar 

  8. L. Danzer: Drei Beispiele zu Lagerungsproblemen, Arch. Math.11 (1960) 159–165.

    MATH  MathSciNet  Google Scholar 

  9. V.C. Dumir, R.J. Hans-Gill: Lattice double coverings in the plane, Indian J. Pure Appl. Math.3 (1972) 466–480.

    MathSciNet  MATH  Google Scholar 

  10. V.C. Dumir, R.J. Hans-Gill: Lattice double packings in the plane, Indian J. Pure Appl. Math.3 (1972) 481–487.

    MathSciNet  MATH  Google Scholar 

  11. G. Fejes Tóth: Multiple lattice packings of symmetric convex domains in the plane, J. London Math. Soc. 2. Ser. 29 (1984) 556–561.

    MATH  MathSciNet  Google Scholar 

  12. G. Fejes Tóth: New results in the theory of packing and covering, in: Convexity and its Applications, P.M. Gruber et al., eds., Birkhäuser 1983, 318–359.

    Google Scholar 

  13. G. Fejes Tóth: Multiple packing and covering of spheres, Acta Math. Acad. Sci. Hungar.34 (1979) 165–176.

    MATH  MathSciNet  Google Scholar 

  14. G. Fejes Tóth: A problem connected with multiple circle-packings and circle-coverings, Studia Sci. Math. Hungar.12 (1977) 447–456.

    MATH  MathSciNet  Google Scholar 

  15. G. Fejes Tóth: Multiple packing and covering of the plane with circles, Acta Math. Acad. Sci. Hungar.27 (1976) 135–140.

    MATH  MathSciNet  Google Scholar 

  16. G. Fejes Tóth, A. Florian: Mehrfache gitterförmige Kreis-und Kugelanordnungen, Monatshefte Math. 79 (1975) 13–20.

    MATH  Google Scholar 

  17. L. Few: Multiple packing of spheres: a survey, in: Proc. Colloq. on Convexity, Københavens Univ. Math. Inst. 1965, 88–93.

    Google Scholar 

  18. L. Few: Multiple packing of spheres, J. London Math. Soc.39 (1964) 51–54.

    MATH  MathSciNet  Google Scholar 

  19. Sh.I. Galiev: Multiple packings and coverings of a sphere (Russian), Diskret. Mat. 1996, 148–160, translation in: Discrete Math. Appl.6 (1996) 413–426.

    Google Scholar 

  20. H. Groemer: Multiple packings and coverings, Stud. Sci. Math. Hungar.21 (1986) 189–200.

    MATH  MathSciNet  Google Scholar 

  21. A. Heppes: Mehrfache gitterförmige Kreislagerungen in der Ebene, Acta Math. Acad. Sci. Hungar.10 (1959) 141–148.

    MathSciNet  Google Scholar 

  22. A. Heppes: Über mehrfache Kreislagerungen, Elemente Math. 10 (1955) 125–127.

    MATH  MathSciNet  Google Scholar 

  23. J. Horváth, Á.H. Temesvári: Über Dichte und Enge von doppelgitterförmigen zweifachen Kreispackungen, Studia Sci. Math. Hungar.18 (1983) 253–268.

    MATH  MathSciNet  Google Scholar 

  24. M.N. Huxley: Exponential sums and lattice points, Proc. London. Math. Soc. 3. Ser. 66 (1993), 279–301.

    MATH  MathSciNet  Google Scholar 

  25. J. Linhart: Ein Methode zur Berechnung der Dichte einer dichtesten gitterförmigen k-fachen Kreispackung, Ber. Math. Inst. Univ. Salzburg1–2 (1983), 11–40.

    Google Scholar 

  26. P. Mani-Levitska, J. Pach: Decomposition problems for multiple coverings of unit balls, manuscript 1986.

    Google Scholar 

  27. J. Pach: Covering the plane with convex polygons, Discrete Comput. Geom.1 (1986) 73–81.

    MATH  MathSciNet  Google Scholar 

  28. J. Pach: Decomposition of multiple packing and covering, in: 2. Kolloq. über Diskrete Geom., Inst. Math. Univ. Salzburg 1980, 169–178.

    Google Scholar 

  29. R. Rado: Covering theorems for ordered sets, Proc. London Math. Soc. 2. Ser. 50 (1948) 509–535.

    MathSciNet  Google Scholar 

  30. M. Schmitz: Die Zerlegung spezieller Einheitskreisüberdeckungen in drei Einheitskreispackungen, Beiträge Algebra Geom. 33 (1992) 17–37.

    MATH  MathSciNet  Google Scholar 

  31. M. Schmitz: Die Zerlegung von doppelgitterförmigen 2-fachen Einheitskreispackungen in drei Einheitskreispackungen, Beiträge Algebra Geom. 32 (1991) 71–86.

    MATH  Google Scholar 

  32. Á.H. Temesvári: Über die dünnste doppelgitterförmige 2-fache Überdeckung mit einem zentralsymmetrischen konvexen Bereich, Beiträge Algebra Geom. 35 (1994) 45–54.

    MATH  Google Scholar 

  33. Á.H. TemesvÁari: Die dichteste gitterförmige 9-fache Kreispackung, Rad Hrvatske Akad. Znan. Umjet.467 (1994) 95–110.

    MathSciNet  Google Scholar 

  34. Á.H. Temesvári, J. Horváth, N.N. Yakovlev: A method for finding the densest lattice k-fold packing of circles (in Russian), Mat. Zametki41 (1987) 625–636.

    MathSciNet  Google Scholar 

  35. N.N. Yakovlev: A method of finding the densest lattice k-packing on a plane (in Russian), Functional Analysis and its Applications in Mechanics and Probability Theory (Moscow, 1983), Moskov. Gos. Univ. 1984, 170–171.

    Google Scholar 

  36. N.N. Yakovlev: The densest lattice 8-packing on a plane (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983/5, 8–16.

    Google Scholar 

  37. L.J. Yang: Multiple lattice packings and coverings of spheres, Monatshefte Math. 89 (1980) 69–76.

    MATH  Google Scholar 

References

  1. I. Bárány, N.P. Dolbilin: A stability property of the densest circle packing, Monatshefte Math. 106 (1988) 107–114.

    MATH  Google Scholar 

  2. A. Bezdek: Double-saturated packing of unit disks, Period. Math. Hungar.21 (1990) 189–203.

    MATH  MathSciNet  Google Scholar 

  3. A. Bezdek: Solid packing of circles in the hyperbolic plane, Studia Sci. Math. Hungar.14 (1979) 203–207.

    MATH  MathSciNet  Google Scholar 

  4. K. Bezdek: Ausfüllungen in der hyperbolischen Ebene durch endliche Anzahl kongruenter Kreise, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.27 (1984) 113–124.

    MATH  MathSciNet  Google Scholar 

  5. K. Böröczky: The problem of Tammes for n = 11, Studia Sci. Math. Hungar.18 (1983) 165–171.

    MATH  MathSciNet  Google Scholar 

  6. K. Böröczky: Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar.32 (1978) 243–261.

    MATH  MathSciNet  Google Scholar 

  7. K. BÖRÖCZKY: Sphere packings in spaces of constant curvature I (in Hungarian), Mat. Lapok 25 (1974) 265–306.

    Google Scholar 

  8. L. Bowen: On the existence of completely saturated packings and completely reduced coverings, Geometriae Dedicata98 (2003) 211–226.

    MATH  MathSciNet  Google Scholar 

  9. L. Bowen, C. Radin: Optimally dense packings of hyperbolic space, Geometriae Dedicata104 (2004) 37–59.

    MATH  MathSciNet  Google Scholar 

  10. L. Bowen, C. Radin: Densest packing of equal spheres in hyperbolic space, Discrete Comput. Geom.29 (2003) 23–39.

    MATH  MathSciNet  Google Scholar 

  11. L. Danzer: Finite point-sets on S2 with minimum distance as large as possible, Discrete Math. 60 (1986) 3–66.

    MATH  MathSciNet  Google Scholar 

  12. G. FEJES TÓTH: Solid sets of circles, Studia Sci. Math. Hungar. 9 (1974) 101–109.

    Google Scholar 

  13. G. Fejes Tóth, G. Kuperberg, W. Kuperberg: Highly saturated packings and reduced coverings, Monatshefte Math. 125 (1998) 127–145.

    MATH  Google Scholar 

  14. L. Fejes Tóth: Solid packing of circles in the hyperbolic plane, Studia Sci. Math. Hungar.15 (1980) 299–302.

    MATH  MathSciNet  Google Scholar 

  15. L. Fejes Tóth: Solid circle-packings and circle-coverings, Studia Sci. Math. Hungar.3 (1968) 401–409.

    MATH  MathSciNet  Google Scholar 

  16. L. Fejes Tóth: Regular Figures, Pergamon Press 1964.

    Google Scholar 

  17. L. Fejes Tóth, A. Heppes: Multisaturated packings of circles, Studia Sci. Math. Hungar.15 (1980) 303–307.

    MATH  MathSciNet  Google Scholar 

  18. A. Florian: Packing of incongruent circles on the sphere, Monatshefte Math. 133 (2001) 111–129.

    MATH  MathSciNet  Google Scholar 

  19. A. Florian: Some recent results on packing and covering with incongruent circles, in: 3rd Internat. Conf. in Stochastic Geom., Convex Bodies and Empirical Measures, Part II (Mazara del Vallo, 1999), P.M. Gruber, ed., Rend. Circ. Mat. Palermo (2) Suppl.65 part 2 (2000) 93–104.

    Google Scholar 

  20. A. Florian, A. Heppes: On the non-solidity of some packings and coverings with circles, in: Discrete Geometry: In Honor of W. Kuperberg’s 60th Birthday, A. Bezdek, ed., Marcel Dekker 2003, 279–290.

    Google Scholar 

  21. A. Florian, A. Heppes: Solid coverings of the Euclidean plane with incongruent circles, Discrete Comput. Geom.23 (2000), 225–245.

    MATH  MathSciNet  Google Scholar 

  22. A. Heppes: On the density of 2-saturated lattice packings of discs, Monatshefte Math. 134 (2001) 51–66.

    MATH  MathSciNet  Google Scholar 

  23. A. Heppes: On the solidity of the hexagonal tiling, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63 (1994) 151–154.

    Google Scholar 

  24. A. Heppes: Solid circle packings in the Euclidean plane, Discrete Comput. Geom.7 (1992) 29–43.

    MATH  MathSciNet  Google Scholar 

  25. A. Heppes, G. Kertész: Packing circles of two different sizes on the sphere, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Studies6 (1997) 357–365.

    Google Scholar 

  26. M. Imre: Kreislagerungen auf Flächen konstanter Krümmung, Acta Math. Acad. Sci. Hungar.15 (1964) 115–121.

    MATH  MathSciNet  Google Scholar 

References

  1. I. Bárány, N.P. Dolbilin: A stability property of the densest circle packing, Monatshefte Math. 106 (1988) 107–114.

    MATH  Google Scholar 

  2. A. Bezdek, K. Bezdek, R. Connelly: Finite and uniform stability of sphere packings, Discrete Comput. Geom.20 (1998) 111–130.

    MATH  MathSciNet  Google Scholar 

  3. K. Böröczky: Über stabile Kreis-und Kugelsysteme, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math.7 (1964) 79–82.

    MATH  Google Scholar 

  4. N.G. de Bruijn: Aufgaben 17 und 18, Nieuw Archief voor Wiskunde2 (1954) p.67. Solution appeared in: Wiskundige Opgaven met de Oplossingen20 (1955) 19–20.

    Google Scholar 

  5. R. Connelly: Rigid circle and sphere packings. I. Finite packings (dual French-English text), Structural Topology14 (1988) 43–60.

    MATH  MathSciNet  Google Scholar 

  6. R. Connelly: Uniformly stable circle packings, Tagungsberichte Math. Forschungsinst. Oberwolfach, Diskrete Geometrie 1987.

    Google Scholar 

  7. L. Danzer: To Problem 8, in: Proc. Colloq. Convexity (Copenhagen, 1965), W. Fenchel, ed., Univ. Copenhagen 1967, 312–313.

    Google Scholar 

  8. R. Dawson: On the mobility of bodies in ℝn, Math. Proc. Cambridge Philos. Soc.98 (1985) 403–412. Corrigenda: ibid, 99 (1986) 377–379.

    MathSciNet  MATH  Google Scholar 

  9. R. Dawson: On removing a ball without disturbing the others, Math. Mag.57 (1984) 27–30.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Fejes Tóth: Stable packing of circles on the sphere (dual French-English text), Structural Topology11 (1985) 9–14.

    MATH  Google Scholar 

  11. L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum (2. Auflage), Springer-Verlag 1972.

    Google Scholar 

  12. L. Fejes Tóth: Scheibenpackungen konstanter Nachbarnzahl, Acta Math. Acad. Sci. Hungar.20 (1969) 375–381.

    MATH  MathSciNet  Google Scholar 

  13. L. Fejes Tóth: Problem 8, in: Proc. Colloq. Convexity (Copenhagen, 1965), W. Fenchel, ed., Univ. Copenhagen 1967, p. 312.

    Google Scholar 

  14. L. Fejes Tóth, A. Heppes: Über stabile Körpersysteme, Compositio Math. 15 (1963) 119–126.

    MathSciNet  Google Scholar 

  15. G.C. Shephard: On a problem of Fejes Tóth, Studia Sci. Math. Hungar.5 (1970) 471–473.

    MathSciNet  Google Scholar 

  16. G. Wegner: Bewegungsstabile Packungen konstanter Nachbarnzahl, Studia Sci. Math. Hungar.6 (1971) 431–438.

    MathSciNet  Google Scholar 

References

  1. N. Alon, P. Pudlák: Equilateral sets in l np , Geom. Funct. Anal.13 (2003) 467–482.

    MATH  MathSciNet  Google Scholar 

  2. K.M. Anstreicher: The thirteen spheres: A new proof, Discrete Comput. Geom.31 (2004) 613–625.

    MATH  MathSciNet  Google Scholar 

  3. F. Bagemihl: A conjecture concerning neighborly tetrahedra. Amer. Math. Monthly63 (1956) 328–329.

    MATH  MathSciNet  Google Scholar 

  4. H.-J. Bandelt, V. Chepoi, M. Laurent: Embedding into rectilinear spaces, Discrete Comput. Geom.19 (1998) 595–604.

    MATH  MathSciNet  Google Scholar 

  5. E. Bannai, N.J.A. Sloane: Uniqueness of certain spherical codes, Canad. J. Math33 (1981) 437–449.

    MathSciNet  Google Scholar 

  6. A.S. Besicovitch: On Crum’s problem, J. London Math. Soc.22 (1947) 285–287.

    MATH  MathSciNet  Google Scholar 

  7. A. Bezdek: On the number of mutually touching cylinders, in: Combinatorial and Computational Geometry, J.E. Goodman et al., eds., Cambridge Univ. Press, MSRI Publications52 (2005), to appear.

    Google Scholar 

  8. A. Bezdek: On the Hadwiger number of a starlike disk, in: Intuitive Geometry (Budapest 1995), Bolyai Soc. Math. Studies6 (1997) 237–245.

    MathSciNet  Google Scholar 

  9. A. Bezdek, K. Kuperberg, W. Kuperberg: Mutually contiguous translates of a plane disk, Duke Math. J.78 (1995) 19–31.

    MATH  MathSciNet  Google Scholar 

  10. K. Bezdek, R. Connelly: Intersection points, Ann. Univ. Sci. Budapest Eötvös, Sect. Math.31 (1988) 115–127.

    MATH  MathSciNet  Google Scholar 

  11. L.M. Blumenthal: Theory and Applications of Distance Geometry, Clarendon Press 1953.

    Google Scholar 

  12. V. Boju, L. Funar: Generalized Hadwiger numbers for symmetric ovals, Proc. Amer. Math. Soc.119 (1993) 931–934.

    MATH  MathSciNet  Google Scholar 

  13. K. Böröczky: The Newton-Gregory problem revisited, in: Discrete Geometry: In Honor of W. Kuperberg’s 60th Birthday, A. Bezdek, ed., Marcel Dekker 2003, 103–110.

    Google Scholar 

  14. K. Böröczky: Über die Newtonsche Zahl regulärer Vielecke, Period. Math. Hungar.1 (1971) 113–119.

    MATH  MathSciNet  Google Scholar 

  15. K. Böröczky Jr.: Finite Packing and Covering, Cambridge Univ. Press, 2004.

    Google Scholar 

  16. K. Böröczky Jr., D.G. Larman, S. Sezgin, C. Zong: On generalized kissing numbers and blocking numbers, in: 3rd Internat. Conf. Stochastic Geometry, Convex Bodies and Empirical Measures, Part II (Mazara del Vallo 1999), P.M. Gruber, ed., Rend. Circ. Mat. Palermo (2) Suppl.65 part 2, (2000) 39–57.

    Google Scholar 

  17. P. Boyvalenkov: Small improvements of the upper bounds of the kissing numbers in dimensions 19, 21 and 23, Atti Sem. Mat. Fis. Univ. Modena42 (1994) 159–163.

    MATH  MathSciNet  Google Scholar 

  18. P. Brass, C. Wenk: On the number of cylinders touching a ball, Geometriae Dedicata81 (2000) 281–284.

    MATH  MathSciNet  Google Scholar 

  19. J.H. Conway, N.J.A. Sloane: Sphere Packings, Lattices, and Groups, Springer-Verlag 1998.

    Google Scholar 

  20. L. Danzer, B. Grünbaum: Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V.L. Klee. Math. Z.79 (1962) 95–99.

    MATH  MathSciNet  Google Scholar 

  21. B.V. Dekster: Anexample of 2n pairwise neighboring n-simplices in ℝn, n ≥ 2, Preprint Univ. Toronto 1982.

    Google Scholar 

  22. P. Delsarte: Bounds for unrestricted codes by linear programming, Philips Res. Rep.27 (1972) 272–289.

    MATH  MathSciNet  Google Scholar 

  23. Y. Edel, E.M. Rains, N.J.A. Sloane: On kissing numbers in dimensions 32 to 128, Electron. J. Combin.5 (1988), #R22.

    Google Scholar 

  24. P. Erdős, Z. Füredi: The greatest angle among n points in the d-dimensional Euclidean space, Ann. Discrete Math.17 (1983) 275–283.

    Google Scholar 

  25. T. Ericson, V. Zinoviev: Codes on Euclidean Spheres, North-Holland 2001.

    Google Scholar 

  26. T. Ericson, V. Zinoviev: On spherical codes generating the kissing number in dimensions 8 and 24, Discrete Mathematics106/107 (1992) 199–207.

    Google Scholar 

  27. G. Fejes Tóth, G. Kuperberg, W. Kuperberg: Highly saturated packings and reduced coverings, Monatshefte Math. 125 (1998) 127–145.

    MATH  Google Scholar 

  28. L. Fejes Tóth: On the number of equal discs that can touch another of the same kind, Studia Sci. Math. Hungar.2 (1967) 363–367.

    MATH  MathSciNet  Google Scholar 

  29. Z. Füredi, P.A. Loeb: On the best constant for the Besicovitch covering theorem, Proc. Amer. Math. Soc.121 (1994) 1063–1073.

    MATH  MathSciNet  Google Scholar 

  30. P.M. Gruber: Typical convex bodies have surprisingly few neighbours in densest lattice packings, Studia Sci. Math. Hungar.21 (1986) 163–173.

    MATH  MathSciNet  Google Scholar 

  31. B. Grünbaum: Strictly antipodal sets, Israel J. Math1 (1963) 5–10.

    MATH  MathSciNet  Google Scholar 

  32. B. Grünbaum: On a conjecture of Hadwiger, Pacific J. Math11 (1961) 215–219.

    MATH  MathSciNet  Google Scholar 

  33. H. Hadwiger: Über Treffanzahlen be translationsgleichen Eikörpern, Arch. Math.8 (1957) 212–213.

    MATH  MathSciNet  Google Scholar 

  34. H. Hadwiger: Ungelöstes Problem Nr. 20, Elem. Math.12 (1957) 121.

    MathSciNet  Google Scholar 

  35. C.J.A. Halberg Jr., E. Levin, E.G. Straus: Oncontiguous congruent sets in Euclidean space, Proc. Amer. Math. Soc.10 (1959) 335–344.

    MATH  MathSciNet  Google Scholar 

  36. A. Heppes, L. Szabó: On the number of cylinders touching a ball, Geometriae Dedicata40 (1991) 111–116.

    MATH  MathSciNet  Google Scholar 

  37. R. Hoppe: Bemerkung der Redaktion, Archiv Math. Physik (Grunert)56 (1874) 307–312.

    Google Scholar 

  38. I. Hortobágyi: Über die Scheibenklassen bezügliche Newtonsche Zahl der konvexen Scheiben, Ann. Univ. Sci. Budapest Eőtvős, Sect. Math.18 (1975) 123–127.

    Google Scholar 

  39. I. Hortobágyi: The Newton number of convex plane regions (in Hungarian), Mat. Lapok23 (1972) 313–317.

    MathSciNet  Google Scholar 

  40. A. Kemnitz, M. Möller: On the Newton number of rectangles, in: Intuitive Geometry (Budapest, 1995), I. Bárány et al., eds., Bolyai Soc. Math. Studies6 (1997) 373–381.

    Google Scholar 

  41. A. Kemnitz, M. Möller, D. Wojzischke: Bounds for the Newton number in the plane, Results Math. 41 (2002) 128–139.

    MATH  MathSciNet  Google Scholar 

  42. J. Koolen, M. Laurent, A. Schrijver: Equilateral dimension of the rectilinear space, Designs, Codes Cryptography21 (2000) 149–164.

    MATH  MathSciNet  Google Scholar 

  43. W. Kuperberg: Problem 3.3, DIMACS report on Workshop on Polytopes and Convex Sets, Rutgers Univ. 1990.

    Google Scholar 

  44. K. Kuperberg, W. Kuperberg: Translates of a starlike plane region with a common point, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Coll. Math. Soc. János Bolyai63, North-Holland 1994, 205–216.

    Google Scholar 

  45. D.G. Larman, C. Zong: On the kissing number of some special convex bodies, Discrete Comput. Geom.21 (1999) 233–242.

    MATH  MathSciNet  Google Scholar 

  46. J. Leech: Some sphere packings in higher space, Canad. J. Math.16 (1964) 657–682.

    MATH  MathSciNet  Google Scholar 

  47. J. Leech: The problem of thirteen spheres, Math. Gazette40 (1956) 22–23.

    MATH  MathSciNet  Google Scholar 

  48. V.I. Levenštein: On bounds for packings in n-dimensional Euclidean space, Soviet Math. Dokl.20 (1979) 417–421.

    Google Scholar 

  49. J. Linhart: Scheibenpackungen mit nach unten beschränkter Nachbarnzahl, Studia Sci. Math. Hungar.12 (1977) 281–293.

    MATH  MathSciNet  Google Scholar 

  50. J. Linhart: Die Newtonsche Zahl von regelmässigen Fünfecken, Period. Math. Hungar.4 (1973) 315–328.

    MATH  MathSciNet  Google Scholar 

  51. J.E. Littlewood: Some Problems in Real and Complex Analysis, D. C. Heath and Co. Raytheon Education Co., 1968

    Google Scholar 

  52. O.R. Musin: The kissing number in four dimensions, arXiv: math.MG/0309430, manuscript.

    Google Scholar 

  53. O.R. Musin: The problem of the twenty-five spheres, Russ. Math. Surv.58 (2003), 794–795.

    MATH  MathSciNet  Google Scholar 

  54. A.M. Odlyzko, N.J.A. Sloane: New bounds on the unit spheres that can touch a unit sphere in n-dimensions, J. Combinatorial Theory Ser. A26 (1979) 210–214.

    MATH  MathSciNet  Google Scholar 

  55. M.A. Perles: At most 2d+1 neighborly simplices in Ed, Ann. Discrete Math.20 (1984) 253–254.

    MathSciNet  Google Scholar 

  56. C.M. Petty: Equilateral sets in Minkowski space, Proc. Amer. Math. Soc.29 369–374.

    Google Scholar 

  57. J. Schopp: Über die Newtonsche Zahl einer Scheibe konstanter Breite, Studia Sci. Math. Hungar.5 (1970) 475–478.

    MathSciNet  Google Scholar 

  58. K. Schütte, B.L. van der Waerden: Das Problem der dreizehn Kugeln, Math. Ann.125 (1953) 325–334.

    MATH  MathSciNet  Google Scholar 

  59. H.P.F. Swinnerton-Dyer: Extremal lattices of convex bodies, Proc. Cambridge Phil. Soc.49 (1953) 161–162.

    Article  MATH  MathSciNet  Google Scholar 

  60. I. Talata: On Hadwiger numbers of direct products of convex bodies, in: Combinatorial and Computational Geometry, J.E. Goodman et al., eds., Cambridge Univ. Press, MSRI Publications52 (2005), to appear.

    Google Scholar 

  61. I. Talata: A lower bound for the translative kissing numbers of simplices, Combinatorica20 (2000) 281–293.

    MATH  MathSciNet  Google Scholar 

  62. I. Talata: The translative kissing number of tetrahedra is 18, Discrete Comput. Geom.22 (1999) 231–248.

    MATH  MathSciNet  Google Scholar 

  63. I. Talata: On extensive subsets of convex bodies, Period. Math. Hungar.38 (1999) 231–246.

    MATH  MathSciNet  Google Scholar 

  64. I. Talata: On a lemma of Minkowski, Period. Math. Hungar.36 (1998) 199–207.

    MATH  MathSciNet  Google Scholar 

  65. I. Talata: Exponential lower bound for the translative kissing numbers of d-dimensional convex bodies, Discrete Comput. Geom.19 (1998) 447–455.

    MATH  MathSciNet  Google Scholar 

  66. H. Tietze: Gelöste und ungelöste mathematische Probleme aus alter und neuer Zeit, 2. Aufl., Verlag C.H. Beck, 1959. English translation: Famous Problems in Mathematics, Graylock Press, 1965.

    Google Scholar 

  67. H. Tietze: Über das Problem der Nachbargebiete im Raum, Monatshefte Math. Phys.16 (1905) 211–216.

    MathSciNet  Google Scholar 

  68. H. Voderberg: Zur Zerlegung der Umgebung eines ebenen Bereiches in kongruente, Jahresber. Deutsch. Math.-Verein.46 (1936) 229–231.

    MATH  Google Scholar 

  69. G.L. Watson: The number of minimum points of positive quadratic forms, Dissertationes Math. Rozprawy Mat.84 (1971) 1–43.

    Google Scholar 

  70. G. Wegner: Relative Newton numbers, Monatshefte Math. 114 (1992) 149–160.

    MATH  MathSciNet  Google Scholar 

  71. J. Zaks: No nine neighborly tetrahedra exist, Memoirs Amer. Math. Soc.447, Amer. Math. Soc. 1991.

    Google Scholar 

  72. J. Zaks: Neighborly families of congruent convex polytopes, Amer. Math. Monthly94 (1987) 151–155.

    MATH  MathSciNet  Google Scholar 

  73. J. Zaks: Arbitrarily large neighborly families of symmetric convex polytopes, Geometriae Dedicata20 (1986) 175–179.

    MATH  MathSciNet  Google Scholar 

  74. J. Zaks: Neighborly families of 2dd-simplices in Ed, Geometriae Dedicata11 (1981) 505–507.

    MATH  MathSciNet  Google Scholar 

  75. J. Zaks: Bounds on neighborly families of convex polytopes, Geometriae Dedicata8 (1979) 279–296.

    MATH  MathSciNet  Google Scholar 

  76. C. Zong: Sphere Packings, Springer-Verlag 1999.

    Google Scholar 

  77. C. Zong: The kissing numbers of convex bodies-a brief survey, Bull. London Math. Soc.30 (1998) 1–10.

    MATH  MathSciNet  Google Scholar 

  78. C. Zong: A few remarks on kissing numbers of convex body, Anz. Österreich. Akad. Wiss. Math.-Naturw. Kl.132 (1995) 11–15.

    MATH  MathSciNet  Google Scholar 

  79. C. Zong: An example concerning the translative kissing number of a convex body, Discrete Comput. Geom.12 (1994) 183–188.

    MATH  MathSciNet  Google Scholar 

References

  1. N. Alon: Packings with large minimum kissing numbers, Discrete Math. 175 (1997) 249–251.

    MATH  MathSciNet  Google Scholar 

  2. E. Bannai, N.J.A. Sloane: Uniqueness of certain spherical codes, Canad. J. Math.33 (1981) 437–449.

    MathSciNet  Google Scholar 

  3. I. Bárány, Z. Füredi, J. Pach: Discrete convex functions and proof of the six circle conjecture of Fejes Tóth, Canad. J. Math.36 (1984) 569–576.

    MATH  MathSciNet  Google Scholar 

  4. A.F. Beardon, K. Stephenson: The uniformization theorem for circle packings, Indiana Univ. Math. J.39 (1990) 1383–1425

    MATH  MathSciNet  Google Scholar 

  5. A. Bezdek, K. Bezdek: A note on the ten-neighbor packings of equal balls, Beiträge Algebra Geom. 27 (1988) 49–53.

    MATH  MathSciNet  Google Scholar 

  6. K. Bezdek, P. Brass: Onk+-neighbour packings and onesided Hadwiger configurations, Beiträge Algebra Geom. 44 (2003) 493–498.

    MATH  MathSciNet  Google Scholar 

  7. K. Bezdek, R. Connelly, G. Kertész: On the average number of neighbors in a spherical packing of congruent circles, in: Intuitive Geometry (Siófok, 1985), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 (1987) 37–52.

    Google Scholar 

  8. V. Chvátal: On a conjecture of Fejes Tóth, Period. Math. Hungar.6 (1975) 357–362.

    MATH  MathSciNet  Google Scholar 

  9. G. Fejes Tóth: Ten-neighbor packing of equal balls, Period. Math. Hungar.12 (1981) 125–127.

    MATH  MathSciNet  Google Scholar 

  10. G. Fejes Tóth, L. Fejes Tóth: Remarks on 5-neighbor packings and coverings with circles, in: Applied Geometry and Discrete Mathematics, P. Gritzmann et al., eds., DIMACS Ser. Discrete Math. Theoret. Comput. Sci.4, Amer. Math. Soc. 1991, 275–288.

    Google Scholar 

  11. G. Fejes Tóth, H. Harborth: Kugelpackungen mit vorgegebenen Nachbarnzahlen, Studia Sci. Math. Hungar.22 (1987) 79–82.

    MATH  MathSciNet  Google Scholar 

  12. L. Fejes Tóth: Research problem 44, Period. Math. Hungar.20 (1989) 89–91.

    MATH  MathSciNet  Google Scholar 

  13. L. Fejes Tóth: Five-neighbor packing of convex discs, Period. Math. Hungar.4 (1973) 221–229.

    MATH  MathSciNet  Google Scholar 

  14. L. Fejes Tóth: Scheibenpackungen konstanter Nachbarnzahl, Acta Math. Acad. Sci. Hungar.20 (1969) 375–381.

    MATH  MathSciNet  Google Scholar 

  15. L. Fejes Tóth, H. Sachs: Research problem 17, Period. Math. Hungar.7 (1976) 87–89.

    MathSciNet  Google Scholar 

  16. L. Fejes Tóth, N. Sauer: Thinnest packing of cubes with a given number of neighbours, Canad. Math. Bull.20 (1977) 501–507.

    MATH  MathSciNet  Google Scholar 

  17. P. Gács: Packing of convex sets in the plane with a great number of neighbors, Acta Math. Acad. Sci. Hungar.23 (1972) 383–388.

    MATH  MathSciNet  Google Scholar 

  18. H. Groemer: Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren, Monatshefte Math.65 (1961) 74–81.

    MATH  MathSciNet  Google Scholar 

  19. H. Harborth, L. Szabó, Z. Ujváry-Menyhárt: Regular sphere packings, Arch. Math. (Basel)78 (2002) 81–89.

    MATH  MathSciNet  Google Scholar 

  20. G. Kertész: Nine points on the hemisphere, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63 (1994) 189–196.

    Google Scholar 

  21. P. Koebe: Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl.88 (1936) 141–164.

    Google Scholar 

  22. G. Kuperberg, O. Schramm: Average kissing numbers for non-congruent sphere packings, Math. Res. Lett.1 (1994) 339–344.

    MATH  MathSciNet  Google Scholar 

  23. J. Linhart: Scheibenpackungen mit nach unten beschränkter Nachbarnzahl, Studia Sci. Math. Hungar.12 (1977) 281–293.

    MATH  MathSciNet  Google Scholar 

  24. E. Makai Jr.: Five-neighbor packing of convex plates, in: Intuitive Geometry (Siófok, 1985) K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai48 (1987) 373–381.

    Google Scholar 

  25. A. Marden, B. Rodin: On Thurston’s formulation and proof of Andreev’s theorem, in: Combinatorial Methods and Function Theory 1989, S. Ruscheweyh et al., eds., Springer Lecture Notes Math. 1435 (1990) 103–115.

    Google Scholar 

  26. R.M. Robinson: Finite sets of points on a sphere with each nearest to five others, Math. Ann.179 (1969) 296–318.

    MATH  MathSciNet  Google Scholar 

  27. B. Rodin, D. Sullivan: The convergence of circle packings to the Riemann mapping, J. Differential Geom., 26 (1987) 349–360.

    MATH  MathSciNet  Google Scholar 

  28. H. Sachs: Coin graphs, polyhedra, and conformal mapping, Discrete Math. 134 (1994) 133–138.

    MATH  MathSciNet  Google Scholar 

  29. H. Sachs: No more than nine unit balls can touch a closed unit hemisphere, Studia Sci. Math. Hungar.21 (1986) 203–206.

    MATH  MathSciNet  Google Scholar 

  30. H. Sachs: Problem6, in: Beiträge zur Graphentheorie vorgetragen auf dem internationalen Kolloquium (Manebach, DDR, Mai 1967), H. Sachs et al., eds., Teubner 1968, 225.

    Google Scholar 

  31. L. Szabó: Regular circle packings, in: Intuitive Geometry (Szeged, 1991), K. Böröczky et al., eds., Colloq. Math. Soc. János Bolyai63 (1994) 465–474.

    Google Scholar 

  32. L. Szabó: 21-neighbor packing of equal balls in the 4-dimensional Euclidean space, Geometriae Dedicata38 (1991) 193–197.

    MATH  MathSciNet  Google Scholar 

  33. I. Talata: On minimum kissing numbers of finite translative packings of a convex body, Beiträge Algebra Geom. 43 (2002) 501–511.

    MATH  MathSciNet  Google Scholar 

  34. I. Talata: The translative kissing number of tetrahedra is 18, Discrete Comput. Geom.22 (1999) 231–248.

    MATH  MathSciNet  Google Scholar 

  35. G. Wegner: Relative Newton numbers, Monatshefte Math. 114 (1992) 149–160.

    MATH  MathSciNet  Google Scholar 

References

  1. A. Bezdek: An optimal route planning evading cubes in three space, Beiträge Algebra Geom. 40 (1999) 79–87.

    MATH  MathSciNet  Google Scholar 

  2. B. Bollobás: Remarks on a paper of L. Fejes Tóth, Studia Sci. Math. Hungar.3 (1968) 373–379.

    MATH  MathSciNet  Google Scholar 

  3. K. Böröczky Jr.: Finite Packing and Covering, Cambridge University Press, 2004.

    Google Scholar 

  4. K. Böröczky, V.P. Soltan: Translational and homothetic clouds for a convex body, Studia Sci. Math. Hungar.32 (1996) 93–102.

    MATH  MathSciNet  Google Scholar 

  5. K. Böröczky Jr., G. Tardos: The longest segment in the complement of a packing, Mathematika49 (2002) 45–49.

    Article  MATH  MathSciNet  Google Scholar 

  6. K.-F. Chan, T.W. Lam: An on-line algorithm for navigating in an unknown environment, Internat. J. Comput. Geom. Appl.3 (1993) 227–244.

    MATH  MathSciNet  Google Scholar 

  7. G. Csóka: The number of congruent spheres that cover a given sphere of three-dimensional space is not less than 30 (in Russian), Studia Sci. Math. Hungar.12 (1977) 323–334.

    MATH  MathSciNet  Google Scholar 

  8. L. Dalla, D.G. Larman, P. Mani-Levitska, C. Zong: The blocking numbers of convex bodies, Discrete Comput. Geom.24 (2000) 267–144.

    MATH  MathSciNet  Google Scholar 

  9. L. Danzer: Drei Beispiele zu Lagerungsproblemen, Arch. Math.11 (1960) 159–165.

    MATH  MathSciNet  Google Scholar 

  10. G. Fejes Tóth: Evading convex discs, Studia Sci. Math. Hungar.13 (1978) 453–461.

    MATH  MathSciNet  Google Scholar 

  11. L. Fejes Tóth: On the permeability of a layer of parallelograms, Studia Sci. Math. Hungar.3 (1968) 195–200.

    MATH  MathSciNet  Google Scholar 

  12. L. Fejes Tóth: On the permeability of a circle layer, Studia Sci. Math. Hungar.1 (1966) 5–10.

    MATH  MathSciNet  Google Scholar 

  13. L. Fejes Tóth: Regular Figures, Pergamon Press, Oxford, 1964.

    MATH  Google Scholar 

  14. L. Fejes Tóoth: Verdeckung einer Kugel durch Kugeln, Publ. Math. Debrecen6 (1959) 234–240.

    MathSciNet  Google Scholar 

  15. A. Florian: Über die Durchlässigkeit einer Schicht konvexer Scheiben, Studia Sci. Math. Hungar.15 (1980) 125–132.

    MathSciNet  Google Scholar 

  16. A. Florian: Über die Durchlässigkeit gewisser Scheibenschichten, Ö sterreich. Akad. Wiss. Math.-Naturw. Kl. Sitzungsber. II188 (1979) 417–427.

    MATH  MathSciNet  Google Scholar 

  17. A. Florian: On the permeability of layers of discs, Studia Sci. Math. Hungar.13 (1978) 125–132.

    MATH  MathSciNet  Google Scholar 

  18. A. Florian, H. Groemer: Two remarks on the permeability of layers of convex bodies, Studia Sci. Math. Hungar.20 (1985) 259–265.

    MATH  MathSciNet  Google Scholar 

  19. P. Frankl, J. Pach, V. Rödl: How to build a barricade, Monatshefte Math. 98 (1984) 93–98.

    MATH  Google Scholar 

  20. A. Heppes: Über Kreis-und Kugelwolken, Acta Math. Acad. Sci. Hungar.12 (1961) 209–214.

    MATH  MathSciNet  Google Scholar 

  21. A. Heppes: EinSatz über gitterförmige Kugelpackungen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.3–4 (1960) 89–90.

    MathSciNet  Google Scholar 

  22. I. Hortobágyi: Über die Durchlässigkeit einer aus Scheiben konstanter Breite bestehenden Schicht, Studia Sci. Math. Hungar.11 (1976) 383–387.

    MATH  MathSciNet  Google Scholar 

  23. J. Pach: On the permeability problem, Studia Sci. Math. Hungar.12 (1977) 419–424.

    MATH  MathSciNet  Google Scholar 

  24. I. Talata: On translational clouds for a convex body, Geometriae Dedicata80 (2000) 319–329.

    MATH  MathSciNet  Google Scholar 

  25. C. Zong: Sphere Packings, Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  26. C. Zong: A note on Hornich’s problem, Arch. Math.72 (1999) 127–131.

    MATH  MathSciNet  Google Scholar 

  27. C. Zong: A problem of blocking light rays, Geometriae Dedicata67 (1997) 117–128.

    MATH  MathSciNet  Google Scholar 

  28. C. Zong: Some remarks concerning kissing numbers, blocking numbers and covering numbers, Period. Math. Hungar.30 (1995) 233–238.

    MATH  MathSciNet  Google Scholar 

  29. C. Zong: Packing and Covering (Ph.D. thesis), TU Wien, 1993.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Structural Packing and Covering Problems. In: Research Problems in Discrete Geometry. Springer, New York, NY. https://doi.org/10.1007/0-387-29929-7_3

Download citation

Publish with us

Policies and ethics