Skip to main content

The Role of Tidal Wetlands in Estuarine Nutrient Cycling

  • Chapter
Changing Land Use Patterns in the Coastal Zone

Part of the book series: Springer Series on Evironmental Management ((SSEM))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aelion, C. M., J. N. Shaw, and M. Wahl. 1997. Impact of suburbanization on ground water quality and denitrification in coastal aquifer sediments. Journal of Experimental Marine Biology and Ecology 213:31–51.

    Article  CAS  Google Scholar 

  • Aelion, C. M., K. Tuerk, and H. Ma. 2005. Role of groundwater in the biogeochemical cycles of carbon, nitrogen and phosphorous in SC and GA coastal waters, pp. 110–129. In, South Atlantic Bight Land Use-Coastal Ecosystem Study (LU-CES) Phase II Final Progress Report. South Carolina Sea Grant Consortium, Charleston, SC.

    Google Scholar 

  • Alberts, J. J. and Z. Filip. 1994. Humic substances in rivers and estuaries of Georgia, USA. Trends in Chemical Geology 1:143–162.

    Google Scholar 

  • Alberts, J. J. and M. Takács. 1999. Importance of humic substances for carbon and nitrogen transport into southeastern United States estuaries. Organic Geochemistry 30:385–395.

    Article  CAS  Google Scholar 

  • Alford, M. 2000. Water quality dynamics and nutrient exchange in tidal freshwater wetlands in the Cooper River Estuary, SC. Master’s thesis, University of South Carolina, Columbia. 100 p.

    Google Scholar 

  • Aller, R. C. and J. Y. Yingst. 1980. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Marine Biology 56:29–42.

    Article  CAS  Google Scholar 

  • Ambrose, R. B., T. A. Wool, and J. L. Martin. 1993. The Water Quality Analysis Simulation Program, WASP5, Part A: Model documentation. U.S. Environmental Protection Agency Environmental Research Laboratory, Athens, GA. 203 p.

    Google Scholar 

  • Bianchi, M., P. Bonin, and Feliatra. 1994. Bacterial nitrification and denitrification rates in the Rhône River plume (northwestern Mediterranean Sea). Marine Ecology Progress Series 103:197–202.

    Article  CAS  Google Scholar 

  • Bowden, W., C. Vörösmarty, J. Morris, B. Peterson, J. Hobbie, P. Steudler, and B. Moore. 1991. Transport and processing of nitrogen in a tidal freshwater wetland. Water Resources Research 27:389–408.

    Article  CAS  Google Scholar 

  • Boynton, W. R., L. Murray, J. D. Hagy, C. Stokes, and W. M. Kemp. 1996. A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19: 408–421.

    Article  CAS  Google Scholar 

  • Böttcher, M. E., B. Hespenheide, E. Llobet-Brossa, C. Beardsley, 0. Larsen, A. Schramm, A. Wieland, G. Böttcher, U.-G. Berninger, and R. Amann. 2000. The biogeochemistry stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: An integrated study. Continental Shelf Research 20:1749–1769.

    Article  Google Scholar 

  • Bratvold, D. and H. McKellar. 2004. Surface water nutrient distributions and tidal exchanges, p. 94–106. In, South Atlantic Bight Land Use-Coastal Ecosystem Study (LU-CES) Phase II Final Progress Report, South Carolina Sea Grant Consortium, Charleston, SC.

    Google Scholar 

  • Bricker, S. 1997. NOAA’s National Estuarine Eutrophication Survey: Selected Results for the Mid-Atlantic, South Atlantic and Gulf of Mexico Regions. Estuarine Research Federation Newsletter 23(1):20–21.

    Google Scholar 

  • Bronk, D. A., P. M. Glibert, T. C. Malone, S. Banahan, and E. Sahlsten. 1998. Inorganic and organic nitrogen cycling in Chesapeake Bay: Autotrophic versus heterotrophic processes and relationships to carbon flux. Aquatic Microbial Ecology 15:177–189.

    Article  Google Scholar 

  • Brown, L. C. and T. 0. Barnwell. 1985. Computer program documentation for the enhanced stream water quality model QUAL2E. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA. 141 p.

    Google Scholar 

  • Burkholder, J. M., H. B. Glasgow Jr., and C. W. Hobbs. 1995. Fish kills linked to a toxic ambush-predator dinoflagellate: Distribution and environmental conditions. Marine Ecology Progress Series 124:23–61.

    Article  Google Scholar 

  • Burnett, W. W. C., H. Bokuniewicz, M. Huettel, W. S. Moore, and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochernistry 66:3–33.

    Article  CAS  Google Scholar 

  • Caffrey, J. M. and W. M. Kemp. 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography 32:1483–1495.

    Google Scholar 

  • Cai, W.-J. and C. E. Reimers, 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content ion the deep northeast Pacific Ocean. Deep-Sea Research 42:1681–1699.

    Article  CAS  Google Scholar 

  • Cai, W.-J. and F. L. Sayles, 1996. Oxygen penetration depths and fluxes in marine sediments. Marine Chemistry 52:123–131.

    Article  CAS  Google Scholar 

  • Capone, D. G. and M. Bautista. 1985. Direct evidence for a groundwater source for nitrate in nearshore marine sediments. Nature 313:143–147.

    Article  Google Scholar 

  • Caraco, N. F., G. Lampman, J. J. Cole, K. E. Limburg, M. L. Pace, and D. Fischer. 1998. Microbial assimilation of DIN in a nitrogen rich estuary: Implications for food quality and isotope studies. Marine Ecology Progress Series 167:59–71.

    Article  CAS  Google Scholar 

  • Carlsson, P., A. Z. Segatto, and E. Granéli. 1993. Nitrogen bound to humic matter of terrestrial origin—a nitrogen pool for coastal phytoplankton? Marine Ecology Progress Series 97:105–116.

    Article  CAS  Google Scholar 

  • Chalmers, A., R. Wiegert, and P. Wolf. 1985. Carbon balance in a salt marsh: Interactions of diffusive export, tidal deposition and rainfallcaused erosion. Estuarine Coastal and Shelf Science 21:757–771.

    Article  CAS  Google Scholar 

  • Childers, D. L. and J. W. Day. 1990. Marsh-water column interactions in two Louisiana estuaries. II. Nutrient dynamics. Estuaries 13:404–417.

    Article  CAS  Google Scholar 

  • Childers, D. L., J. W. Day, and H. N. McKellar. 2000. Twenty more years of marsh and estuarine flux studies: Revisiting Nixon (1980), p. 391–423. In, Weinstein, M. P. and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Christensen, P. B., S. Rysgaard, N. P. Sloth, T. Dalsgaard, and S. Schwaerter. 2000. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuartine fjord with sea cage trout farms. Aquatic Microbial Ecology 21:73–84.

    Article  Google Scholar 

  • Coates, J. D., D. J. Ellis, E. L. Blunt-Harris, C. V. Gaw, E. E. Roden, and D. R. Lovley. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Applied Environmental Microbial 64:1504–1509.

    CAS  Google Scholar 

  • Dame, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, T. G. Wolaver, T. H. Chrzanowski, H. N. McKellar, and F. J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Marine Ecology Progress Series 72:153–166.

    Article  Google Scholar 

  • de la Cruz, A. A. 1973. The role of tidal marshes in the productivity of coastal waters. Association of Southeastern Biologists Bulletin 20:147–156.

    Google Scholar 

  • Focht, D. D. and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology 1:135–214.

    CAS  Google Scholar 

  • Galloway, J. N., R. W. Howarth, A. F. Michaels, S. W. Nixon, J.M. Prospero, and F. J. Dentener. 1996. Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed. Biogeochemistry 35:3–35.

    Article  CAS  Google Scholar 

  • Gardner, L. R. 1975. Runoff from an intertidal marsh during low tide exposure. Recession curves and chemical characteristics. Limnology and Oceanography 20:81–89.

    CAS  Google Scholar 

  • GESAMP. 1990. State of the Marine Environment. Reports and Studies No. 39. Joint Group of Experts on the Scientific Aspects of Marine Pollution. Nairobi, United Nations Environment Programme. 111 p.

    Google Scholar 

  • Goñi, M. A. and K. A. Thomas. 2000. Sources and transformations of organic matter in surface soils and sediments from a tidal estuary, North Inlet, South Carolina, USA. Estuaries 23:548–564.

    Article  Google Scholar 

  • Goñi, M. A., M. J. Teixeira, and D. W. Perkey. 2003. Sources and distribution of organic matter in a river dominated estuary (Winyah Bay, SC, USA). Estuarine Coastal and Shelf Science 57:1023–1048.

    Article  CAS  Google Scholar 

  • Hargrave, B. T. and G. A. Phillips. 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment. Estuarine Coastal and Shelf Science 12:725–737.

    Article  Google Scholar 

  • Hertkorn, N., H. Claus, P. H. Schmitt-Kopplin, E. M. Perdue, and Z. Filip. 2002. Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environmental Science and Technology 36:4334–4345.

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson, C. S., I. Buffam, J. Hobbie, J. Vallino, M. Perdue, B. Eversmeyer, F. Prahl, J. Covert, R. Hodson, M.A. Moran, E. Smith, J. Baross, B. Crump, S. Findlay, and K. Foreman. 1998. Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability. Biogeochemistry 43:211–234.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S., A. E. Giblin, and J. Tucker. 2001. Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Marine Ecology Progress Series 224:1–19.

    CAS  Google Scholar 

  • Hopkinson, C. S. and J. P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65:961–969.

    Article  Google Scholar 

  • Howarth, R. W., J. R. Fruci, and D. Sherman. 1991. Inputs of sediment and carbon to an estuary ecosystem: Influence of land-use. Ecological Applications 1:27–39.

    Article  Google Scholar 

  • Huang, X. and J. Morris. 2003. Trends in phosphatase activity along a successional grandient of tidal freshwater marshes on the Cooper River, South Carolina. Estuaries 26:1281–1290.

    CAS  Google Scholar 

  • Jensen, M. H., T. K. Andersen, and J. Ssrensen, 1988. Denitrification in coastal bay sediment: regional and seasonal variation in Aarhus Bight, Denmark. Marine Ecology Progress Series 48:155–162.

    Article  CAS  Google Scholar 

  • Jordan, T. E. and D. L. Correll. 1991. Continuous automated sampling of tidal exchanges of nutrients by brackish marshes. Estuarine, Coastal and Shelf Science 32:527–545.

    Article  CAS  Google Scholar 

  • Jordan, T. E. and D. L. Correll. 1985. Nutrient chemistry and hydrology of interstitial water in brackish tidal marshes of Chesapeake Bay. Estuarine, Coastal and Shelf Science 21:45–55.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. and J. Sørensen. 1985. Season cycles of 02, NO 3 and SO 2−4 reduction in estuarine sediments: the significance of an NO 3 reduction maximum in spring. Marine Ecology Progress Series 24:65–74.

    Article  Google Scholar 

  • Joye, S. 2004. Groundwater and sediment biogeochemistry in the Okatee River Estuary, p. 106–110. In, South Atlantic Bight Land Use-Coastal Ecosystem Study (LU-CES) Phase II Final Progress Report, South Carolina Sea Grant Consortium, Charleston, SC.

    Google Scholar 

  • Kemp, M., P. Sampou, J. Caffrey, M. Mayer, K. Henriksen, and W. Boynton. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography 35:1545–1563.

    CAS  Google Scholar 

  • Kelley, B. J., D. L. Tufford, J. T. Morris, and L. Hardison. (In preparation.) Macrophyte community succession in former rice fields on the Cooper River, South Carolina.

    Google Scholar 

  • Kelly, J. R. and S. Nixon. 1984. Experimental studies of the effect of organic deposition on the metabolism of a coastal marine bottom community. Marine Ecology Progress Series 17:157–169.

    Article  CAS  Google Scholar 

  • Klok, J., M. Baas, H. C. Cox, J. W. DeLeeuw, W. I. C. Rijpstra, and P. A. Schenck. 1984. Qualitative and quantitative characterization of the total organic matter in a recent marine sediment (Part II). Organic Geochemistry 6:265–279.

    Article  CAS  Google Scholar 

  • Koike, I. and A. Hattori. 1978. Denitrification and ammonia formation in anaerobic coastal sediments. Applied Environmental Microbiology 35:278–282.

    CAS  Google Scholar 

  • Koike, I. and J. Sørensen.1988. Nitrate reduction and denitrification in marine sediments, pp. 251–273. In, Blackburn, T. H. and J. Sørensen (eds.), Nitrogen Cycling in Coastal Marine Environments. John Wiley and Sons, New York, NY.

    Google Scholar 

  • LaMontagne, M., V. Astorga, A. Giblin, and I. Valiela. 2002. Denitrification and the stoichiometry of nutrient regeneration in Waquoit Bay, Massachusetts. Estuaries 25:272–281.

    Article  CAS  Google Scholar 

  • Leonard, L. A. and M. E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40:1474–1484.

    Google Scholar 

  • Lewitus, A. J., R. V. Jesien, T. M. Kana, J. M. Burkholder, H. B. Glasgow Jr., and E. May. 1995. Discovery of the “phantom” dinoflagellate in Chesapeake Bay. Estuaries 18:373–378.

    Article  Google Scholar 

  • Livingston, R. 1996. Eutrophication in estuaries and coastal systems: Relationships of physical alterations, salinity stratification, and hypoxia, pp. 285–318. In, Vernberg, J., W. Vernberg, and T. Siewicki (eds.), Sustainable Development in the Southeastern Coastal Zone. University of South Carolina Press, Columbia.

    Google Scholar 

  • Mackin, J. E. and K. T. Swider. 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Journal of Marine Research 47:681–716.

    CAS  Google Scholar 

  • Marvin-DiPasquale, M. C. and D. G. Capone. 1998. Benthic sulfate reduction along the Chesapeake Bay central channel. I. Spatial trends and controls. Marine Ecology Progress Series 168:213–228.

    Article  CAS  Google Scholar 

  • McKellar, H., A. Smith, A. Douglass, and R. Rao. 1995. Wetland nutrient exchange in an urbanized estuary: Relationships to pointsource Discharges and nonpoint runoff, p. 85. Program Abstracts for the 13th International Estuarine Research Federation Conference. Estuarine Research Foundation, Port Republic, MD.

    Google Scholar 

  • McKellar, H., P. Saroprayogi, M. Alford, J. Kelley, and J. Morris. 2001. Tidal nutrient fluxes in relict rice field wetlands: Relations to vegetation dominants and succession. Invited oral presentation at the 16th International Biennial Estuarine Research Federation Conference, September, 2001, St. Petersburg, FL.

    Google Scholar 

  • Merrill, J. and J. Cornwell. 2000. The role of oligohaline marshes in estuarine nutrient cycling, pp. 425–441. In, Weinstein, M. and D. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Middelboe, M, N. Kroer, N. 0. G. Jørgensen,and D. Pakulski. 1998. Influence of sediment on pelagic carbon and nitrogen turnover in a shallow Danish estuary. Aquatic Microbial Ecology 14:81–90.

    Article  Google Scholar 

  • Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens, and C. H. R. Heip. 2000. The fate of intertidal microphytobenthois carbon: An in situ 13C-labeling study. Limnology and Oceanography 45:1224–1234.

    CAS  Google Scholar 

  • Middelburg, J. J., J. Nieuwenhuize, R. K. Lubberts, and 0. van de Plassche. 1997. Organic carbon isotope systematics of coastal marshes. Estuarine, Coastal and Shelf Science 45:681–687.

    Article  CAS  Google Scholar 

  • Moore, W. S. 1996. Large groundwater inputs to coastal waters revealed by 226Rean richments. Nature 380:612–614.

    Article  CAS  Google Scholar 

  • Moran, M. A. and R. E. Hodson. 1990. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnology and Oceanography 35:1744–1756.

    CAS  Google Scholar 

  • Moran, M. A. and R. E. Hodson. 1994. Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnology and Oceanography 39:762–771.

    CAS  Google Scholar 

  • Morin, J. and J. W. Morse. 1999. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry 65:97–110.

    Article  CAS  Google Scholar 

  • Morris, J. T. 1980. The nitrogen uptake kinetics of Spartina alternifZora in culture. Ecology 61:1114–1121.

    Article  CAS  Google Scholar 

  • Morris, J., J. Bulak, J. Kelley, and H. McKellar. 2002. Structure and Functions of tidal freshwater wetlands on the Cooper River, SC: Effects of water management on succession, nutrient cycling, and fish habitat. Annual Progress Report, South Carolina Sea Grant Consortium, Charleston, SC.

    Google Scholar 

  • Nixon, S. 1980. Between coastal marshes and coastal waters: A review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry, pp. 437–525. In, Hamilton, P. and K. B. Macdonald (eds.), Estuarine and Wetland Processes. Plenum, New York, NY.

    Google Scholar 

  • Nowicki, B., E. Requintina, D. Keuren, and J. Portnoy. 1999. The role of sediment denitrification in reducing groundwater-derived nitrate inputs to Nauset marsh estuary, Cape Cod, Massachusetts. Estuaries 22:245–259.

    Article  CAS  Google Scholar 

  • Odum, E. P. 1968. A research challenge: Evaluating the productivity of coastal and estuarine water, pp. 63–64. In, Proceedings of the Second Sea Grant Conference. University of Rhode Island, Newport, RI.

    Google Scholar 

  • Odum, E. P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling and detritus-based food chains, pp. 485–495. In, Kennedy, V. (ed.), Estuarine Perspectives. Academic Press, New York, NY.

    Google Scholar 

  • Pickett, J., H. McKellar, and J. Kelley. 1989. Community composition, leaf mortality, and net primary production in a tidal freshwater marsh in South Carolina, pp. 351–364. In, Sharitz, R. R. (ed.), Freshwater Wetlands and Wildlife. Department of Energy Symposium Series No. 61, U.S. DOE Office of Science and Technology Information, Oak Ridge, TN.

    Google Scholar 

  • Pomeroy, L., K Bancroft, J. Breed, R. Christian, D. Frankenberg, J. Hall, L. Maurer, W. Wiebe, R. Wiegert, and R. Wetzel. 1977. Flux of organic matter through a salt marsh, pp. 270–279. In, Wiley, M. (ed.), Estuarine Processes, Vol. 2. Academic Press, New York, NY.

    Google Scholar 

  • Pomeroy, L. R., W. M. Darley, E. L. Dunn, J. L. Gallagher, E. B. Haines, D. M. Whitney. 1981. Primary production, pp. 39–68. In, Pomeroy, L. R. and R. G. Weigert (eds.), The Ecology of a Salt Marsh. Springer, Berlin.

    Google Scholar 

  • Rabalais, N. N., R. E. Turner, Q. Dortch. W. J. Wiseman Jr., and B. K. Sen Gupta. 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19:386–407.

    Article  CAS  Google Scholar 

  • Rashid, M. A. 1985. Geochemistry of Marine Humic Compounds. Springer-Verlag, New York, NY. 300 p.

    Google Scholar 

  • Reddy, K. R., W. H. Patrick, and C. W. Lindau. 1989. Nitrificationdenitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography 34: 1004–1013.

    CAS  Google Scholar 

  • Risgaard-Petersen, N. 2003. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae. Limnology and Oceanography 48:93–105.

    CAS  Google Scholar 

  • Rocha, C. 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnology and Oceanography 43:811–822.

    Article  Google Scholar 

  • Rocha, C. and A. P. Cabral. 1998. The influence of tidal action on porewater nitrate concentration and dynamics in intertidal sediments of the Sado estuary. Estuaries 21:635–645.

    Article  CAS  Google Scholar 

  • Rivera-Monroy, V. H. and R. R. Twilley. 1996. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Termino Lagoon, Mexico). Limnology and Oceanography 41:271–283.

    Google Scholar 

  • Saroprayogi, P. 2001. Tidal exchange on nutrients in the freshwater wetlands on the Upper Cooper River, SC. Master’s thesis, University of South Carolina, Columbia. 69 p.

    Google Scholar 

  • Seitzinger, S. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnology and Oceanography 33:702–724.

    CAS  Google Scholar 

  • Shabman, L. 1996. Land settlement, public policy, and the environmental future of the Southeast coast, pp. 7–24. In, Vernberg, J., W. Vernberg, and T. Siewicki (eds.), Sustainable Development in the Southeastern Coastal Zone. University of South Carolina Press, Columbia.

    Google Scholar 

  • Slomp, C. P. and P. Van Cappellen, 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295:64–86.

    Article  CAS  Google Scholar 

  • Smetacek, V., B. von Bodugen, K. von Bröckel, and B. Zeitzschel. 1976. The plankton tower. II. Release of nutrients from sediments due to changes in the density of bottom water. Marine Biology 34:373–378.

    Article  Google Scholar 

  • Sørrensen, J., J. M. Tiedje, and R. B. Firestone. 1980. Inhibition of sulfide by nitric of nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Applied Environmental Microbiology 39:105–108.

    Google Scholar 

  • Stanley, D. 1996. Long-term trends in nutrient generation by point and nonpoint sources in the Albemarle-Pamlico estuarine basin, pp. 319–342. In, Vernberg, J., W. Vernberg, and T. Siewicki (eds.), Sustainable Development in the Southeastern Coastal Zone. University of South Carolina Press, Columbia.

    Google Scholar 

  • Strauss, E. A., and G. A. Lamberti. 2000. Regulation of nitrification in aquatic sediments by organic carbon. Lirnnology and Oceanography 45:1854–1859.

    Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Article  Google Scholar 

  • Thurman, E. M. 1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk, Boston, MA.

    Google Scholar 

  • Turner, R. 1978. Community plankton respiration in a salt marsh estuary and the importance of macrophyte leachates. Lirnnology and Oceanography 23:442–451.

    Google Scholar 

  • Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-Anderson, C. D’Avanzo, M. Babione, C. H. Sham, J. Brawley, and K. Lajtha. 1992. Coupling of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15:443–457.

    Article  CAS  Google Scholar 

  • Valiela, I. and J. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656.

    Article  CAS  Google Scholar 

  • Vörösmarty, C. J. and T. C. Loder 1994. Spring-neap tidal contrasts and nutrient dynamics in a marsh-dominated estuary. Estuaries 17:537–551.

    Article  Google Scholar 

  • Wahl, M., H. McKellar, and T. Williams. 1997. Patterns of nutrient loading in forested and urbanized coastal streams. Journal of Experimental Marine Biology and Ecology 213:111–132.

    Article  CAS  Google Scholar 

  • Whiting, G. and D. Childers. 1989. Subtidal advective water flux as a potentially important nutrient input to southeastern USA saltmarsh estuaries. Estuarine, Coastal and Shelf Science 28:417–431.

    Article  CAS  Google Scholar 

  • Whiting, G. J., H. N. McKellar Jr., B. Kjerfve, and J. Spurrier. 1987. Tidal exchange of nitrogen between a southeastern salt marsh and the coastal ocean. Marine Biology 95:173–182.

    Article  CAS  Google Scholar 

  • Whiting, G. J., H. N. McKellar Jr., and T. Wolaver. 1989. Nitrogen exchange between a portion of vegetated salt marsh and the adjoining creek. Limnology and Oceanography 32:463–473.

    Article  Google Scholar 

  • Whiting, G. and J. Morris. 1986. Nitrogen fixation in a salt marsh: its relationship to temperature and an evaluation of an in situ chamber technique. Soil Biology and Biochemistry 18:515–521.

    Article  CAS  Google Scholar 

  • Windom, H. L. 1992. Contamination of the marine environment from land-based sources. Marine Pollution Bulletin 25:14.

    Article  Google Scholar 

  • Windom, H. L., H. McKellar, C. Alexander, A. Craig, A. Abusam, and M. Alford. 1998. Indicators of trends towards coastal eutrophication. Final Report to South Carolina Sea Grant, LU-CES Program, Charleston, SC. 68 p. http://www.lu-ces.org/documents/SOKreports/coastaleutrophication.pdf.

    Google Scholar 

  • Wolaver, T. G., L. Wetzel, J. Zieman, and K. Webb. 1980. Nutrient interactions between salt marsh, mudflats, and estuarine water, pp. 123–134. In, Kennedy, V. S. (ed.), Estuarine Perspectives. Academic Press, New York, NY.

    Google Scholar 

  • Woodwell, G. M., C. A. S. Hall, D. E. Whitney, and R. A. Houghton. 1979. The Flax Pond ecosystem study: Exchanges of inorganic nitrogen between an estuarine marsh and Long Island Sound. Ecology 60:695–702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McKellar, H.N., Bratvold, D. (2006). The Role of Tidal Wetlands in Estuarine Nutrient Cycling. In: Kleppel, G.S., DeVoe, M.R., Rawson, M.V. (eds) Changing Land Use Patterns in the Coastal Zone. Springer Series on Evironmental Management. Springer, New York, NY. https://doi.org/10.1007/0-387-29023-0_6

Download citation

Publish with us

Policies and ethics