Skip to main content

Perception of Pitch by People with Cochlear Hearing Loss and by Cochlear Implant Users

  • Chapter
Pitch

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arehart KH (1994) Effects of harmonic content on complex-tone fundamental-frequency discrimination in hearing-impaired listeners. J Acoust Soc Am 95:3574–3585.

    Article  CAS  PubMed  Google Scholar 

  • Arehart KH (1998) Effects of high-frequency amplification on double-vowel identification in listeners with hearing loss. J Acoust Soc Am 104:1733–1736.

    Article  CAS  PubMed  Google Scholar 

  • Arehart KH, Burns EM (1999) A comparison of monotic and dichotic complex-tone pitch perception in listeners with hearing loss. J Acoust Soc Am 106:993–997.

    Article  CAS  PubMed  Google Scholar 

  • Arehart KH, King CA, McLean-Mudgett KS (1997) Role of fundamental frequency differences in the perceptual separation of competing vowel sounds by listeners with normal hearing and listeners with hearing loss. J Speech Lang Hear Res 40:1434–1444.

    CAS  PubMed  Google Scholar 

  • Assmann PF, Summerfield AQ (1990) Modeling the perception of concurrent vowels: vowels with different fundamental frequencies. J Acoust Soc Am 88:680–697.

    Article  CAS  PubMed  Google Scholar 

  • Baer T, Moore BCJ, Gatehouse S (1993) Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality and response times. J Rehab Res Dev 30:49–72.

    CAS  Google Scholar 

  • Brokx JPL, Nooteboom SG (1982) Intonation and the perceptual separation of simultaneous voices. J Phonet 10:23–36.

    Google Scholar 

  • Burns EM, Turner C (1986) Pure-tone pitch anomalies. II. Pitch-intensity effects and diplacusis in impaired ears. J Acoust Soc Am 79:1530–1540.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP (1994) Detecting pitch-pulse asynchronies and differences in fundamental frequency. J Acoust Soc Am 95:968–979.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1996) Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker. J Acoust Soc Am 99:517–524.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1997) The effects of two temporal cues on pitch judgements. J Acoust Soc Am 102:1097–1105.

    Article  Google Scholar 

  • Carlyon RP, Deeks JM (2002) Limitations on rate discrimination. J Acoust Soc Am 112:1009–1025.

    PubMed  Google Scholar 

  • Carlyon RP, Moore BCJ, Micheyl C (2000) The effect of modulation rate on the detection of frequency modulation and mistuning of complex tones. J Acoust Soc Am 108:304–315.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM, Wouters J (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    PubMed  Google Scholar 

  • Chatterjee M, Robert ME (2001) Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol 2:159–171.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Shannon RV (1998) Forward masked excitation patterns in multielectrode electrical stimulation. J Acoust Soc Am 103:2565–2572.

    CAS  PubMed  Google Scholar 

  • Ciocca V, Francis AL, Aisha R, Wong L (2002) The perception of Cantonese lexical tones by early-deafened cochlear implantees. J Acoust Soc Am 111:2250–2256.

    Article  PubMed  Google Scholar 

  • Culling JF, Darwin CJ (1993) Perceptual separation of simultaneous vowels: within and across-formant grouping by F0. J Acoust Soc Am 93:3454–3467.

    Article  CAS  PubMed  Google Scholar 

  • Culling JF, Darwin CJ (1994) Perceptual and computational separation of simultaneous vowels: Cues arising from low-frequency beating. J Acoust Soc Am 95:1559–1569.

    CAS  PubMed  Google Scholar 

  • Dallos P, Popper R, Fay R (1996) The Cochlea. New York: Springer-Verlag.

    Google Scholar 

  • Darwin CJ (1992) Listening to two things at once. In: Schouten MEH (ed), The Auditory Processing of Speech—From Sounds to Words. Berlin: Mouton de Gruyter, pp. 133–147.

    Google Scholar 

  • de Cheveigné A (1993) Separation of concurrent harmonic sounds: fundamental frequency estimation and a time-domain cancellation model of auditory processing. J Acoust Soc Am 93:3271–3290.

    Google Scholar 

  • de Mare G (1948) Investigations into the functions of the auditory apparatus in perception deafness. Acta Otolaryngol Suppl 74:107–116.

    Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17:369–420.

    CAS  PubMed  Google Scholar 

  • Florentine M, Houtsma AJM (1983) Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss. J Acoust Soc Am 73:961–965.

    Article  CAS  PubMed  Google Scholar 

  • Fourcin AJ, Rosen SM, Moore BCJ, Douek EE, Clark GP, Dodson H, Bannister LH (1979) External electrical stimulation of the cochlea: clinical, psychophysical, speech-perceptual and histological findings. Br J Audiol 13:85–107.

    CAS  PubMed  Google Scholar 

  • Freyman RL, Nelson DA (1986) Frequency discrimination as a function of tonal duration and excitation-pattern slopes in normal and hearing-impaired listeners. J Acoust Soc Am 79:1034–1044.

    Article  CAS  PubMed  Google Scholar 

  • Freyman RL, Nelson DA (1987) Frequency discrimination of short-versus long-duration tones by normal and hearing-impaired listeners. J Speech Hear Res 30:28–36.

    CAS  PubMed  Google Scholar 

  • Freyman RL, Nelson DA (1991) Frequency discrimination as a function of signal frequency and level in normal-hearing and hearing-impaired listeners. J Speech Hear Res 34:1371–1386.

    CAS  PubMed  Google Scholar 

  • Gaeth J, Norris T (1965) Diplacusis in unilateral high frequency hearing losses. J Speech Hear Res 8:63–75.

    Google Scholar 

  • Gengel RW (1973) Temporal effects on frequency discrimination by hearing-impaired listeners. J Acoust Soc Am 54:11–15.

    Article  CAS  PubMed  Google Scholar 

  • Geurts L, Wouters J (2001) Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants. J Acoust Soc Am 109:713–726.

    Article  CAS  PubMed  Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

    Article  CAS  PubMed  Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Srulovicz P (1977) Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Evans EF, Wilson JP (eds), Psychophysics and Physiology of Hearing. London: Academic Press, pp. 337–346.

    Google Scholar 

  • Grant KW (1987) Frequency modulation detection by normally hearing and profoundly hearing-impaired listeners. J Speech Hear Res 30:558–563.

    CAS  PubMed  Google Scholar 

  • Grant KW, Ardell LH, Kuhl PK, Sparks DW (1985) The contributions of fundamental frequency, amplitude envelope, and voicing duration cues to speechreading in normal-hearing subjects. J Acoust Soc Am 77:671–677.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    Article  CAS  PubMed  Google Scholar 

  • Hall JW, Wood EJ (1984) Stimulus duration and frequency discrimination for normal-hearing and hearing-impaired subjects. J Speech Hear Res 27:252–256.

    CAS  PubMed  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neur Comput 13:2273–2316.

    CAS  Google Scholar 

  • Hoekstra A, Ritsma RJ (1977) Perceptive hearing loss and frequency selectivity. In: Evans EF, Wilson JP (eds), Psychophysics and Physiology of Hearing. London: Academic, pp. 263–271.

    Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of pure tones: evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Article  Google Scholar 

  • Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310.

    Article  Google Scholar 

  • Huss M, Moore BCJ, Baer T, Glasberg BR (2001) Perception of pure tones by listeners with and without a ‘dead region.’ Br J Audiol 35:149–150.

    Google Scholar 

  • Huss M, Moore BCJ (2005a) Dead regions and noisiness of pure tones. Int J Audiol (in press).

    Google Scholar 

  • Huss M, Moore BCJ (2005b) Dead regions and pitch perception. J Acoust Soc Am (in press).

    Google Scholar 

  • Ketten DR, Vannier MW, Skinner MW, Gates GA, Wang G, Neely JG (1998) In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol 107:1–16.

    Google Scholar 

  • Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behaviour in two-tone responses as reflected in cochlear-nerve-fibre responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    Article  CAS  PubMed  Google Scholar 

  • Lacher-Fougère S, Demany L (1998) Modulation detection by normal and hearing-impaired listeners. Audiology 37:109–121.

    PubMed  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross correlation: a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    Article  CAS  PubMed  Google Scholar 

  • Long CJ, Carlyon RP, McKay CM, Vanat Z (2002) Temporal pitch perception: examination of first-order intervals. Int J Audiol 41:249.

    Google Scholar 

  • McDermott HJ, McKay CM (1994) Pitch ranking with nonsimultaneous dual-electrode electrical stimulation of the cochlea. J Acoust Soc Am 96:155–162.

    Article  CAS  PubMed  Google Scholar 

  • McDermott HJ, McKay CM (1997) Musical pitch perception with electrical stimulation of the cochlea. J Acoust Soc Am 101:1622–1631.

    Article  CAS  PubMed  Google Scholar 

  • McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am 91:3367–3371.

    Article  CAS  PubMed  Google Scholar 

  • McDermott HJ, Lech M, Kornblum MS, Irvine DRF (1998) Loudness perception and frequency discrimination in subjects with steeply sloping hearing loss; possible correlates of neural plasticity. J Acoust Soc Am 104:2314–2325.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1994) Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees. J Acoust Soc Am 96:2664–2673.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1995) Pitch matching of amplitude modulated current pulse trains by cochlear implantees: the effect of modulation depth. J Acoust Soc Am 97:1777–1785.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, O’Brien A, James CJ (1999) Effect of current level on electrode discrimination in electrical stimulation. Hear Res 136:159–164.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, McDermott HJ, Carlyon RP (2000) Place and temporal cues in pitch perception: are they truly independent? Acoust Res Lett Online (http://ojpsaiporg/ARLO/tophtml) 1:25–30.

    Google Scholar 

  • Meddis R, Hewitt M (1988) A computational model of low pitch judgement. In: Duifhuis H, Horst JW, Wit HP (eds), Basic Issues in Hearing. London: Academic Press, pp. 148–153.

    Google Scholar 

  • Meddis R, Hewitt M (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811–1820.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Moore BCJ, Carlyon RP (1998) The role of excitation-pattern cues and temporal cues in the frequency and modulation-rate discrimination of amplitude-modulated tones. J Acoust Soc Am 104:1039–1050.

    CAS  PubMed  Google Scholar 

  • Miller RL, Calhoun BM, Young ED (1999) Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma. J Acoust Soc Am 105:311–325.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1973a) Frequency difference limens for narrow bands of noise. J Acoust Soc Am 54:888–896.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1973b) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1974) Relation between the critical bandwidth and the frequency-difference limen. J Acoust Soc Am 55:359.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1977) Effects of relative phase of the components on the pitch of three-component complex tones. In: Evans EF, Wilson JP (eds), Psychophysics and Physiology of Hearing. London: Academic Press, pp. 349–358.

    Google Scholar 

  • Moore BCJ (1998) Cochlear Hearing Loss. London: Whurr.

    Google Scholar 

  • Moore BCJ (2001) Dead regions in the cochlea: diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends Amplif 5:1–34.

    Google Scholar 

  • Moore BCJ (2003) An Introduction to the Psychology of Hearing, 5th ed. San Diego: Academic Press.

    Google Scholar 

  • Moore BCJ, Alcántara JI (2001) The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear Hear 22:268–278.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1986) The relationship between frequency selectivity and frequency discrimination for subjects with unilateral and bilateral cochlear impairments. In: Moore BCJ, Patterson RD (eds), Auditory Frequency Selectivity. New York: Plenum Press, pp. 407–414.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1988a) Effects of the relative phase of the components on the pitch discrimination of complex tones by subjects with unilateral and bilateral cochlear impairments. In: Duifhuis H, Wit H, Horst J (eds), Basic Issues in Hearing. London: Academic Press, pp. 421–430.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1988b) Pitch perception and phase sensitivity for subjects with unilateral and bilateral cochlear hearing impairments. In: Quaranta A (ed), Clinical Audiology. Bari, Italy: Laterza, pp. 104–109.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1990) Frequency selectivity in subjects with cochlear loss and its effects on pitch discrimination and phase sensitivity. In: Grandori F, Cianfrone G, Kemp DT (eds), Advances in Audiology. Basel: Karger, pp. 187–200.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1997) A model of loudness perception applied to cochlear hearing loss. Audit Neurosci 3:289–311.

    Google Scholar 

  • Moore BCJ, Moore GA (2003) Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects. Hear Res 182:153–163.

    Article  PubMed  Google Scholar 

  • Moore BCJ, Peters RW (1992) Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. J Acoust Soc Am 91:2881–2893.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Sek A (1994) Effects of carrier frequency and background noise on the detection of mixed modulation. J Acoust Soc Am 96:741–751.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Sek A (1995) Effects of carrier frequency, modulation rate and modulation waveform on the detection of modulation and the discrimination of modulation type (AM vs FM). J Acoust Soc Am 97:2468–2478.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Sek A (1996) Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. J Acoust Soc Am 100:2320–2331.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Skrodzka E (2002) Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation. J Acoust Soc Am 111:327–335.

    PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1985a) Relative dominance of individual partials in determining the pitch of complex tones. J Acoust Soc Am 77:1853–1860.

    Google Scholar 

  • Moore BCJ, Laurence RF, Wright D (1985b) Improvements in speech intelligibility in quiet and in noise produced by two-channel compression hearing aids. Br J Audiol 19:175–187.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Wojtczak M, Vickers DA (1996) Effect of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100:481–489.

    Google Scholar 

  • Moore BCJ, Huss M, Vickers DA, Glasberg BR, Alcántara JI (2000) A test for the diagnosis of dead regions in the cochlea. Br J Audiol 34:205–224.

    CAS  PubMed  Google Scholar 

  • Murray N, Byrne D (1986) Performance of hearing-impaired and normal hearing listeners with various high-frequency cut-offs in hearing aids. Aust J Audiol 8:21–28.

    Google Scholar 

  • Nelson PB, Jin S-H (2002) Understanding speech in single-talker interference: normal-hearing listeners and cochlear implant users. J Acoust Soc Am 111:2429.

    Google Scholar 

  • Nelson DA, van Tasell DJ, Schroder AC, Soli S, Levine S (1995) Electrode ranking of “place pitch” and speech recognition in electrical hearing. J Acoust Soc Am 98:1987–1999.

    CAS  PubMed  Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654.

    CAS  PubMed  Google Scholar 

  • Patterson RD (1987a) A pulse ribbon model of monaural phase perception. J Acoust Soc Am 82:1560–1586.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD (1987b) A pulse ribbon model of peripheral auditory processing. In: Yost WA, Watson CS (eds), Auditory Processing of Complex Sounds. Hillsdale, NJ: Erlbaum, pp. 167–179.

    Google Scholar 

  • Patterson RD, Wightman FL (1976) Residue pitch as a function of component spacing. J Acoust Soc Am 59:1450–1459.

    CAS  PubMed  Google Scholar 

  • Patterson RD, Allerhand MH, Giguère C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.

    Article  CAS  PubMed  Google Scholar 

  • Pfingst BE, Holloway LA, Poopat N, Subramanya AR, Warren MF, Zwolan TA (1994) Effects of stimulus level on nonspectral frequency discrimination by human subjects. Hear Res 78:197–209.

    Article  CAS  PubMed  Google Scholar 

  • Pick G, Evans EF, Wilson JP (1977) Frequency resolution in patients with hearing loss of cochlear origin. In: Evans EF, Wilson JP (eds), Psychophysics and Physiology of Hearing. London: Academic Press, pp. 273–281.

    Google Scholar 

  • Pijl S, Schwarz DWF (1995) Melody recognition and musical interval perception by deaf subjects stimulated with electrical pulse trains through single cochlear implant electrodes. J Acoust Soc Am 98:886–895.

    Article  CAS  PubMed  Google Scholar 

  • Plack CJ, Carlyon RP (1994) The detection of differences in the depth of frequency modulation. J Acoust Soc Am 96:115–125.

    Article  CAS  PubMed  Google Scholar 

  • Plack CJ, Carlyon RP (1995) Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics. J Acoust Soc Am 98:1355–1364.

    Article  Google Scholar 

  • Plack CJ, White LJ (2000) Pitch matches between unresolved complex tones differing by a single interpulse interval. J Acoust Soc Am 108:696–705.

    CAS  PubMed  Google Scholar 

  • Plomp R (1967) Pitch of complex tones. J Acoust Soc Am 41:1526–1533.

    CAS  PubMed  Google Scholar 

  • Plomp R, Steeneken HJM (1973) Place dependence of timbre in reverberant sound fields. Acustica 28:50–59.

    Google Scholar 

  • Risberg A (1974) The importance of prosodic elements for the lipreader. In: Nielson HB, Klamp E (eds), Visual and Audio-visual Perception of Speech. Stockholm: Almquist and Wiksell, pp. 153–164.

    Google Scholar 

  • Ritsma RJ (1963) On pitch discrimination of residue tones. Int Audiol 2:34–37.

    Google Scholar 

  • Ritsma RJ, Engel FL (1964) Pitch of frequency modulated signals. J Acoust Soc Am 36:1637–1655.

    Article  Google Scholar 

  • Rosen S (1986) Monaural phase sensitivity: frequency selectivity and temporal processes. In: Moore BCJ, Patterson RD (eds), Auditory Frequency Selectivity. New York: Plenum Press, pp. 419–428.

    Google Scholar 

  • Rosen S (1987) Phase and the hearing impaired. In: Schouten MEH (ed), The Psychophysics of Speech Perception. Dordrecht: Martinus Nijhoff, pp. 481–488.

    Google Scholar 

  • Rosen S, Fourcin A (1986) Frequency selectivity and the perception of speech. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 373–487.

    Google Scholar 

  • Rosen SM, Fourcin AJ, Moore BCJ (1981) Voice pitch as an aid to lipreading. Nature 291:150–152.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA (1994) Cochlear delays and traveling waves: comments on ‘Experimental look at cochlear mechanics.’ Audiology 33:131–142.

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Recio A (1996) The effects of acoustic trauma, other cochlea injury and death on basilar membrane responses to sound. In: Axelsson A, Borchgrevink H, Hamernik RP, Hellstrom PA, Henderson D, Salvi RJ (eds), Scientific Basis of Noise-Induced Hearing Loss. Stuttgart: Thieme, pp. 23–35.

    Google Scholar 

  • Saberi K, Hafter ER (1995) A common neural code for frequency-and amplitude-modulated sounds. Nature 374:537–539.

    Article  CAS  PubMed  Google Scholar 

  • Schoeny Z, Carhart R (1971) Effects of unilateral Ménière’s disease on masking level differences. J Acoust Soc Am 50:1143–1150.

    Article  CAS  PubMed  Google Scholar 

  • Schouten JF (1940) The residue and the mechanism of hearing. Proc Konink Akad Wetenschap 43:991–999.

    Google Scholar 

  • Sek A, Moore BCJ (1995) Frequency discrimination as a function of frequency, measured in several ways. J Acoust Soc Am 97:2479–2486.

    Article  CAS  PubMed  Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    Article  CAS  PubMed  Google Scholar 

  • Shackleton TM, Carlyon RP (1994) The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. J Acoust Soc Am 95:3529–3540.

    CAS  PubMed  Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    CAS  PubMed  Google Scholar 

  • Shamma S, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644.

    CAS  PubMed  Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Javel E (1997) Electric stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–144.

    Article  CAS  PubMed  Google Scholar 

  • Simon HJ, Yund EW (1993) Frequency discrimination in listeners with sensorineural hearing loss. Ear Hear 14:190–199.

    Article  CAS  PubMed  Google Scholar 

  • Simpson AM, Moore BCJ, Glasberg BR (1990) Spectral enhancement to improve the intelligibility of speech in noise for hearing-impaired listeners. Acta Otolaryngol Suppl 469:101–107.

    CAS  PubMed  Google Scholar 

  • Skinner MW, Clark GM, Whitford LA, et al. (1994) Evaluation of a new Spectral Peak coding strategy for the Nucleus 22 channel cochlear implant system. Am J Otol 15:15–27.

    PubMed  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    Article  CAS  PubMed  Google Scholar 

  • Summers V, Leek MR (1998) F0 processing and the separation of competing speech signals by listeners with normal hearing and with hearing loss. J Speech Lang Hear Res 41:1294–1306.

    CAS  PubMed  Google Scholar 

  • Terhardt E (1974) Pitch of pure tones: its relation to intensity. In: Zwicker E, Terhardt E (eds), Facts and Models in Hearing. Berlin: Springer-Verlag, pp. 350–357.

    Google Scholar 

  • Thai-Van H, Micheyl C, Moore BCJ, Collet L (2003) Enhanced frequency discrimination near the hearing loss cutoff: a consequence of central auditory plasticity induced by cochlear damage? Brain 126:2235–2245.

    Article  PubMed  Google Scholar 

  • Thornton AR, Abbas PJ (1980) Low-frequency hearing loss: perception of filtered speech, psychophysical tuning curves, and masking. J Acoust Soc Am 67:638–643.

    Article  CAS  PubMed  Google Scholar 

  • Tong YC, Clark GM (1985) Absolute identification of electric pulse rates and electrode positions by cochlear implant listeners. J Acoust Soc Am 77:1881–1888.

    Article  CAS  PubMed  Google Scholar 

  • Tong YC, Blamey PJ, Dowell RC, Clark GM (1983) Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. J Acoust Soc Am 74:73–80.

    Article  CAS  PubMed  Google Scholar 

  • Townshend B, Cotter N, von Compernolle D, White RL (1987) Pitch perception by cochlear implant subjects. J Acoust Soc Am 82:106–115.

    Article  CAS  PubMed  Google Scholar 

  • Turner CW, Burns EM, Nelson DA (1983) Pure tone pitch perception and low-frequency hearing loss. J Acoust Soc Am 73:966–975.

    Article  CAS  PubMed  Google Scholar 

  • Tyler RS, Wood EJ, Fernandes MA (1983) Frequency resolution and discrimination of constant and dynamic tones in normal and hearing-impaired listeners. J Acoust Soc Am 74:1190–1199.

    Article  CAS  PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1987) Temporal response patterns of single auditory-nerve fibers elicited by periodic electrical stimuli. Hear Res 29:207–222.

    PubMed  Google Scholar 

  • van Hoesel RJM, Clark GM (1997) Psychophysical studies with two binaural cochlear implant subjects. J Acoust Soc Am 102:495–507.

    PubMed  Google Scholar 

  • Verschuure J, van Meeteren AA (1975) The effect of intensity on pitch. Acustica 32:33–44.

    Google Scholar 

  • Villchur E (1973) Signal processing to improve speech intelligibility in perceptive deafness. J Acoust Soc Am 53:1646–1657.

    Article  CAS  PubMed  Google Scholar 

  • Wakefield GH, Nelson DA (1985) Extension of a temporal model of frequency discrimination: intensity effects in normal and hearing-impaired listeners. J Acoust Soc Am 77:613–619.

    CAS  PubMed  Google Scholar 

  • Webster JC, Schubert ED (1954) Pitch shifts accompanying certain auditory threshold shifts. J Acoust Soc Am 26:754–760.

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238.

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Zerbi M, Finley C, Lawson D, van den Honert C (1997) Speech processors for auditory prostheses (Eighth Quarterly Progress Report). NIH.

    Google Scholar 

  • Woolf NK, Ryan AF, Bone RC (1981) Neural phase-locking properties in the absence of outer hair cells. Hear Res 4:335–346.

    CAS  PubMed  Google Scholar 

  • Zeng F-G (2002) Temporal pitch in electric hearing. Hear Res 174:101–106.

    Article  PubMed  Google Scholar 

  • Zeng FG, Fu QJ, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255.

    Article  CAS  PubMed  Google Scholar 

  • Zeng F-G, Popper AN, Fay RR (2004) Auditory Prostheses. New York: Springer-Verlag.

    Google Scholar 

  • Zurek PM, Formby C (1981) Frequency-discrimination ability of hearing-impaired listeners. J Speech Hear Res 24:108–112.

    CAS  PubMed  Google Scholar 

  • Zwicker E (1956) Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6:356–381.

    Google Scholar 

  • Zwicker E, Fastl H (1990) Psychoacoustics—Facts and Models. Berlin: Springer-Verlag.

    Google Scholar 

  • Zwolan TA, Collins LM, Wakefield GH (1997) Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects. J Acoust Soc Am 102:3673–3685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Moore, B.C.J., Carlyon, R.P. (2005). Perception of Pitch by People with Cochlear Hearing Loss and by Cochlear Implant Users. In: Plack, C.J., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds) Pitch. Springer Handbook of Auditory Research, vol 24. Springer, New York, NY. https://doi.org/10.1007/0-387-28958-5_7

Download citation

Publish with us

Policies and ethics