Skip to main content

Lysosomal Proteases

Revival of the Sleeping Beauty

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Lysosomal proteases belong to the aspartic, cysteine, or serine proteinase families of hydrolytic enzymes. They are expressed ubiquitously, and in a tissue- or cell type-specific manner. Although we still call them lysosomal proteases, the enzymes are usually detected within all vesicles of the endocytic pathway. In specific cell types, they might even become secreted and might fulfill important tasks in the direct pericellular surrounding. Functions of lysosomal proteases comprise bulk protein degradation within lysosomes, antigen processing within early endosomes, proprotein processing at unexpected locations such as secretory vesicles, prohormone processing and degradation of matrix constituents in the extracellular space, and, most recently, lysosomal proteases have been proposed to contribute to the initiation of apoptotic processes within the cytosol. Many of these functions were determined through the use of cathepsin-deficient mice which also demonstrated the redundancy of some cathepsins, i.e., those belonging to the cysteine proteinases. Challenges for future research on lysosomal proteases are to uncover more of their in vivo substrates and to clarify where and which of the many enzymes are essential for the maintenance of vital functions of cells, tissues, or organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otto K. Cathepsins B1 and B2. In: Barrett AJ, Dingle JT, eds. Tissue Proteinases. Amsterdam, London: North-Holland Publishing Co., 1971:1–28.

    Google Scholar 

  2. Rawlings ND, O’Brien E, Barrett AJ. MEROPS: The protease database. Nucleic Acids Res 2002; 30(1):343–346.

    Article  PubMed  CAS  Google Scholar 

  3. Honey K, Rudensky AY. Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 2003; 3(6):472–482.

    Article  PubMed  CAS  Google Scholar 

  4. Brix K, Linke M, Tepel C et al. Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem 2001; 382(5):717–725.

    Article  PubMed  CAS  Google Scholar 

  5. Roshy S, Sloane BF, Moin K. Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev 2003; 22(2–3):271–286.

    Article  PubMed  CAS  Google Scholar 

  6. Mehtani S, Gong Q, Panella J et al. In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem 1998; 273(21):13236–13244.

    Article  PubMed  CAS  Google Scholar 

  7. Zwicky R, Muntener K, Csucs G et al. Exploring the role of 5′ alternative splicing and of the 3′-untranslated region of cathepsin B mRNA. Biol Chem 2003; 384(7):1007–1018.

    Article  PubMed  CAS  Google Scholar 

  8. Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci 2002; 115 (Pt 24):4877–4889.

    Article  PubMed  CAS  Google Scholar 

  9. Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol 2000; 10(8):316–321.

    Article  PubMed  CAS  Google Scholar 

  10. Salvesen GS. A lysosomal protease enters the death scene. J Clin Invest 2001; 107(1):21–22.

    Article  PubMed  CAS  Google Scholar 

  11. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: Facts and opportunities. EMBO J 2001; 20(17):4629–4633.

    Article  PubMed  CAS  Google Scholar 

  12. Smith RE, van Frank RM. The use of amino acid derivatives of 4-methoxy-beta-naphthylamine for the assay and subcellular localization of tissue proteinases. Front Biol 1975; 43(4):193–249.

    PubMed  CAS  Google Scholar 

  13. Boonacker E, Van Noorden CJ. Enzyme cytochemical techniques for metabolic mapping in living cells, with special reference to proteolysis. J Histochem Cytochem 2001; 49(12):1473–1486.

    PubMed  CAS  Google Scholar 

  14. Spiess E, Bruning A, Gack S et al. Cathepsin B activity in human lung tumor cell lines: Ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J Histochem Cytochem 1994; 42(7):917–929.

    PubMed  CAS  Google Scholar 

  15. Owen CA, Campbell MA, Sannes PL et al. Cell surface-bound elastase and cathepsin G on human neutrophils: A novel, nonoxidative mechanism by which neutrophils focus and preserve catatlytic activity of serine proteinases. J Cell Biol 1995; 131(3):775–789.

    Article  PubMed  CAS  Google Scholar 

  16. Brix K, Lemansky P, Herzog V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 1996; 137(5):1963–1974.

    Article  PubMed  CAS  Google Scholar 

  17. Hiraiwa M. Cathepsin A/protective protein: An unusual lysosomal multifunctional protein. Cell Mol Life Sci 1999; 56(11–12):894–907.

    Article  PubMed  CAS  Google Scholar 

  18. Cuervo AM, Mann L, Bonten EJ et al. Cathepsin a regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 2003; 22(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  19. Maclvor DM, Shapiro SD, Pham CT et al. Normal neutrophil function in cathepsin G-deficient mice. Blood 1999; 94(12):4282–4293.

    CAS  Google Scholar 

  20. Tkalcevic J, Novelli M, Phylactides M et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 2000; 12(2):201–210.

    Article  PubMed  CAS  Google Scholar 

  21. Shirahama-Noda K, Yamamoto A, Sugihara K et al. Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. J Biol Chem 2003; 278(35):33194–33199.

    Article  PubMed  CAS  Google Scholar 

  22. Deussing J, Roth W, Saftig P et al. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc Nad Acad Sci USA 1998; 95(8):4516–4521.

    Article  CAS  Google Scholar 

  23. Saftig P, Hetman M, Schmahl W et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 1995; 14(15):3599–3608.

    PubMed  CAS  Google Scholar 

  24. Koike M, Nakanishi H, Saftig P et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 2000; 20(18):6898–6906.

    PubMed  CAS  Google Scholar 

  25. Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 1997; 59:63–88.

    Article  PubMed  CAS  Google Scholar 

  26. Reinheckel T, Deussing J, Roth W et al. Towards specific functions of lysosomal cysteine peptidases: Phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 2001; 382(5):735–741.

    Article  PubMed  CAS  Google Scholar 

  27. Shi GP, Bryant RA, Riese R et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J Exp Med 2000; 191(7):1177–1186.

    Article  PubMed  CAS  Google Scholar 

  28. Tolosa E, Li W, Yasuda Y et al. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 2003; 112(4):517–526.

    PubMed  CAS  Google Scholar 

  29. Manoury B, Mazzeo D, Li DN et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity 2003; 18(4):489–498.

    Article  PubMed  CAS  Google Scholar 

  30. Nagler DK, Menard R. Family C1 cysteine proteases: Biological diversity or redundancy? Biol Chem 2003; 384(6):837–843.

    Article  PubMed  Google Scholar 

  31. Mason RW, Stabley DL, Picerno GN et al. Evolution of placental proteases. Biol Chem 2002; 383(7–8):1113–1118.

    Article  PubMed  CAS  Google Scholar 

  32. Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 2002; 120(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  33. Roth W, Deussing J, Botchkarev VA et al. Cathepsin L deficiency as molecular defect of furless: Hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J 2000; 14(13):2075–2086.

    Article  PubMed  CAS  Google Scholar 

  34. Nakagawa T, Roth W, Wong P et al. Cathepsin L: Critical role in Ii degradation and CD4 T cell selection in the thymus. Science 1998; 280(5362):450–453.

    Article  PubMed  CAS  Google Scholar 

  35. Stypmann J, Glaser K, Roth W et al. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 2002; 99(9):6234–6239.

    Article  PubMed  CAS  Google Scholar 

  36. Tobin DJ, Foitzik K, Reinheckel T et al. The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol 2002; 160(5):1807–1821.

    PubMed  CAS  Google Scholar 

  37. Friedrichs B, Tepel C, Reinheckel T et al. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 2003; 111(11):1733–1745.

    Article  PubMed  CAS  Google Scholar 

  38. Saftig P, Hunziker E, Wehmeyer O et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95(23):13453–13458.

    Article  PubMed  CAS  Google Scholar 

  39. Gelb BD, Shi GP, Chapman HA et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996; 273(5279):1236–1238.

    Article  PubMed  CAS  Google Scholar 

  40. Bromme D, Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler 1995; 376(6):379–384.

    PubMed  CAS  Google Scholar 

  41. Buhling F, Gerber A, Hackel C et al. Expression of cathepsin K in lung epithelial cells. Am J Respir Cell Mol Biol 1999; 20(4):612–619.

    PubMed  CAS  Google Scholar 

  42. Tepel C, Bromme D, Herzog V et al. Cathepsin K in thyroid epithelial cells: Sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci 2000; 113 (Pt 24):4487–4498.

    PubMed  CAS  Google Scholar 

  43. Felbor U, Kessler B, Mothes W et al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 2002; 99(12):7883–7888.

    Article  PubMed  CAS  Google Scholar 

  44. Halangk W, Lerch MM, Brandt-Nedelev B et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 2000; 106(6):773–781.

    Article  PubMed  CAS  Google Scholar 

  45. Yasothornsrikul S, Greenbaum D, Medzihradszky KF et al. Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci USA 2003; 100(16):9590–9595.

    Article  PubMed  CAS  Google Scholar 

  46. Guicciardi ME, Deussing J, Miyoshi H et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000; 106(9):1127–1137.

    Article  PubMed  CAS  Google Scholar 

  47. Shannon P, Pennacchio LA, Houseweart MK et al. Neuropathological changes in a mouse model of progressive myoclonus epilepsy: Cystatin B deficiency and Unverricht-Lundborg disease. J Neuropathol Exp Neurol 2002; 61(12):1085–1091.

    PubMed  Google Scholar 

  48. Turk V, Brzin J, Kotnik M et al. Human cysteine proteinases and their protein inhibitors stefins, cystatins and kininogens. Biomed Biochim Acta 1986; 45(11–12):1375–1384.

    PubMed  CAS  Google Scholar 

  49. Houseweart MK, Pennacchio LA, Vilaythong A et al. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol 2003; 56(4):315–327.

    Article  PubMed  CAS  Google Scholar 

  50. Schaschke N, Assfalg-Machleidt I, Machleidt W et al. Substrate/propeptide-derived endo-epoxysuccinyl peptides as highly potent and selective cathepsin B inhibitors. FEBS Lett 1998; 421(1):80–82.

    Article  PubMed  CAS  Google Scholar 

  51. Selzer PM, Pingel S, Hsieh I et al. Cysteine protease inhibitors as chemotherapy: Lessons from a parasite target. Proc Natl Acad Sci USA 1999; 96(20):11015–11022.

    Article  PubMed  CAS  Google Scholar 

  52. Greenbaum D, Medzihradszky KF, Burlingame A et al. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 2000; 7(8):569–581.

    Article  PubMed  CAS  Google Scholar 

  53. Nazif T, Bogyo M. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc Natl Acad Sci USA 2001; 98(6):2967–2972.

    Article  PubMed  CAS  Google Scholar 

  54. Jessani N, Liu Y, Humphrey M et al. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci USA 2002; 99(16):10335–10340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Brix, K. (2005). Lysosomal Proteases. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_5

Download citation

Publish with us

Policies and ethics