Skip to main content

Detecting Selective Sweeps with Haplotype Tests

Hitchhiking and Haplotype Tests

  • Chapter
Selective Sweep

Abstract

In this chapter, neutrality tests based on haplotype distribution are evaluated as a way of detecting selective sweeps. Several kinds of haplotype tests are reviewed, including haplotype number, haplotype diversity and haplotype partition tests. We focus on incomplete sweeps, where recombination between the selected locus and a given marker allows for several preexisting neutral lineages to survive the sweep and for some preexisting genetic variation to remain in a sample. Several problems are addressed, including the distinction between possible alternative hypotheses, the effect of sampling strategy, of conditioning the statistics on the population mutational parameter θ and/or the observed number of polymorphic sites S and, finally, the effect of intragenic recombination together with the choice of one- vs. two-tailed tests. Corresponding guidelines are proposed. To compare the power of haplotype tests and of other classical tests to detect selective sweeps, we use a simple selective sweep model with a deterministic approximation, allowing for genetic exchange between the selected locus and a given neutral marker. We conclude that there are ways of overcoming the difficulties in applying the tests, which are powerful means for revealing incomplete selective sweep effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimura M. The neutral theory of molecular evolution. Sci Am 1979; 241:98–100.

    Article  PubMed  CAS  Google Scholar 

  2. Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 1996; 13:261–277.

    PubMed  CAS  Google Scholar 

  3. Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci 2000; 355:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  4. Begun DJ, Aquadro CF. Molecular population genetics of the distal portion of the X chromosome in Drosophila: Evidence for genetic hitchhiking of the yellow-achaete region. Genetics 1991; 129:1147–1158.

    PubMed  CAS  Google Scholar 

  5. Begun DJ, Aquadro CF. Levels of naturally occuring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 1992; 356:519–520.

    Article  PubMed  CAS  Google Scholar 

  6. Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 1991; 126:1111–1117.

    Google Scholar 

  7. Nachman MW, Bauer VL, Cromwell SL et al. DNA variability and recombination rate at X-linked loci in Humans. Genetics 1998; 150:1133–1141.

    PubMed  CAS  Google Scholar 

  8. Nachman MW. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics 1997; 147:1303–1316.

    PubMed  CAS  Google Scholar 

  9. Baudry E, Kerdelhue C, Innan H et al. Species and recombination effects on DNA variability in the tomato genus. Genetics 2001; 158:1725–1735.

    PubMed  CAS  Google Scholar 

  10. Marais G, Mouchiroud D, Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 2001; 98:5688–5692.

    Article  PubMed  CAS  Google Scholar 

  11. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious alleles on neutral molecular variation. Genetics 1993; 134:1289–1303.

    PubMed  CAS  Google Scholar 

  12. Hudson RR, Kaplan NL. Deleterious Background selection with recombination. Genetics 1995; 141:1605–1617.

    PubMed  CAS  Google Scholar 

  13. Braverman JM, Hudson RR, Kaplan NL et al. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 1995; 140:783–796.

    PubMed  CAS  Google Scholar 

  14. Hudson RR. The how and why of generating gene genealogies in: Takahata and Clarck, eds. Mecanism of molecular evolution. Japan scientific societies press Sinauer associates, inc, 1993:23–36.

    Google Scholar 

  15. Begun DJ, Aquadro CF. Evolution at the tip and base of the X chromosome in an African population of Drosophila melanogaster. Mol Biol Evol 1995; 12:382–390.

    PubMed  CAS  Google Scholar 

  16. Carr M, Soloway JR, Robinson TE et al. An investigation of the cause of low variability on the fourth chromosome of Drosophila melanogaster. Mol Biol Evol 2001; 18:2260–2269.

    PubMed  CAS  Google Scholar 

  17. Wang W, Thornton K, Berry A et al. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science 2002; 295:134–137.

    Article  PubMed  CAS  Google Scholar 

  18. Kirby DA, Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics 1996; 144:635–645.

    PubMed  CAS  Google Scholar 

  19. Barton NH. The effect of hitch-hiking on neutral genealogies. Genet Res 1998; 72:123–133.

    Article  CAS  Google Scholar 

  20. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123:585–595.

    PubMed  CAS  Google Scholar 

  21. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics 1993; 133:693–709.

    PubMed  CAS  Google Scholar 

  22. Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics 2000; 155:1405–1413.

    PubMed  CAS  Google Scholar 

  23. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002; 160:765–777.

    PubMed  CAS  Google Scholar 

  24. Hudson RR, Bailey K, Skarecky D et al. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 1994; 136:1329–1340.

    PubMed  CAS  Google Scholar 

  25. Strobeck C. Average number of nucleotide differences in a sample from a single subpopulation a test for population subdivision. Genetics 1987; 117:149–154.

    PubMed  Google Scholar 

  26. Fu YX. New statistical tests of neutrality for DNA samples from a population. Genetics 1996; 143:557–570.

    PubMed  CAS  Google Scholar 

  27. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and back ground selection. Genetics 1997; 147:915–925.

    PubMed  CAS  Google Scholar 

  28. Depaulis F, Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 1998; 15:1788–1790.

    PubMed  CAS  Google Scholar 

  29. Andolfatto P, Wall JD, Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 1999; 153:1297–1311.

    PubMed  CAS  Google Scholar 

  30. Griffiths RC. The number of alleles and segregating sites in a sample from the infinite-alleles model. Adv Appl Prob 1982; 14:225–239.

    Article  Google Scholar 

  31. Nei M. Molecular evolutionary genetics. New York: Columbia University Press, 1987.

    Google Scholar 

  32. Watterson GA. The homozygosity test of neutrality. Genetics 1978; 88:405–417.

    PubMed  Google Scholar 

  33. Kelly JK. A test of Neutrality based on interlocus associations. Genetics 1997; 146:1197–1206.

    PubMed  CAS  Google Scholar 

  34. Wall JD. Recombination and the power of statistical tests of neutrality. Genet Res 1999; 74:65–69.

    Article  Google Scholar 

  35. Fay J, Wu C. A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol 1999; 16:1003–1005.

    PubMed  CAS  Google Scholar 

  36. Takahata N, Nei M. Allelic Genealogy under overdominant and frequency-dependent selection and polymorphism of Major Histocompatibility Complex loci. Genetics 1990; 124:967–978.

    PubMed  CAS  Google Scholar 

  37. Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987; 116:153–159.

    PubMed  CAS  Google Scholar 

  38. Galtier N, Depaulis F, Barton NH. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics 2000; 155:981–987.

    PubMed  CAS  Google Scholar 

  39. Ewens WJ. The sampling theory of selectively neutral alleles. Theor Popul Biol 1972; 3:87–112.

    Article  PubMed  CAS  Google Scholar 

  40. Watterson GA. On the number of segregation sites. Theor Popul Biol 1975; 7:256–276.

    Article  PubMed  CAS  Google Scholar 

  41. Markovtsova L, Marjoram P, Tavaré S. On a test of Depaulis and Veuille. Mol Biol Evol 2001; 18:1132–1133.

    PubMed  CAS  Google Scholar 

  42. Depaulis F, Mousset S, Veuille M. Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol Biol Evol 2001; 18:1136–1138.

    PubMed  CAS  Google Scholar 

  43. Wall JD, Hudson RR. Coalescent simulations and statistical test of neutrality. Mol Biol Evol 2001; 18:1134–1135.

    PubMed  CAS  Google Scholar 

  44. Wall JD. A comparison of estimators of the population recombination rate. Mol Biol Evol 2000; 17:156–163.

    PubMed  CAS  Google Scholar 

  45. Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985; 111:147–164.

    PubMed  CAS  Google Scholar 

  46. Bénassi V, Depaulis F, Meghlaoui GK et al. Partial sweeping of variation at the Fbp2 locus in a west African population of Drosophila melanogaster. Mol Biol Evol 1999; 16:347–353.

    PubMed  Google Scholar 

  47. Depaulis F, Brazier L, Veuille M. Selective sweep at the Drosophila melanogaster suppressor of hairless locus and its association with the In(2L)t inversion polymorphism. Genetics 1999; 152:1017–1931.

    PubMed  CAS  Google Scholar 

  48. Przeworski M, Wall JD. Why is there so little intragenic linkage disequilibrium in humans? Genet Res 2001; 77:143–151.

    Article  PubMed  CAS  Google Scholar 

  49. Przeworski M, Wall JD, Andolfatto P. Recombination and the frequency spectrum in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol 2001; 18:291–298.

    PubMed  CAS  Google Scholar 

  50. Andolfatto P, Przeworski M. A genome-wide departure from the standard neutral model in natural populations of drosophila. Genetics 2000; 156:257–268.

    PubMed  CAS  Google Scholar 

  51. Kirby DA, Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics 1995; 141:1483–1490.

    PubMed  CAS  Google Scholar 

  52. Stephan W, Wiehe THE, Lenz MW. The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theor Popul Biol 1992; 41:237–254.

    Article  Google Scholar 

  53. Przeworski M. The signature of positive selection at randomly chosen Loci. Genetics 2002; 160:1179–89.

    PubMed  Google Scholar 

  54. Depaulis F, Mousset S, Veuille M. Power of neutrality tests to detect bottlenecks and hitchhiking. J Mol Evol 2003; 57(Suppl 1):S 190–200.

    Article  CAS  Google Scholar 

  55. Baudry E, Depaulis F. Effect of misoriented sites on neutrality tests with outgroup. Genetics 2003; 165:1619–1622.

    PubMed  Google Scholar 

  56. Cirera S, Aguadé M. Evolutionnary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics 1997; 147:189–197.

    PubMed  CAS  Google Scholar 

  57. Hamblin MT, Veuille M. Population structure among African and derived populations of Drosophila simulans: Evidence for ancient subdivision and recent admixture. Genetics 1999; 153:305–317.

    PubMed  CAS  Google Scholar 

  58. Andolfatto P, Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics 2000; 154:1681–1691.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Depaulis, F., Mousset, S., Veuille, M. (2005). Detecting Selective Sweeps with Haplotype Tests. In: Nurminsky, D. (eds) Selective Sweep. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27651-3_4

Download citation

Publish with us

Policies and ethics