Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, J.K., Labarca, P., Delgado, R., Jalink, K., and Zuker, C.S., 1998, Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 20: 1219–1229.

    PubMed  CAS  Google Scholar 

  • Almaguer, C., Cheng, W., Nolder, C., and Patton-Vogt, J., 2004, Glycerophosphoinositol, a novel phosphate source whose transport is regulated by multiple factors in Saccharomyces cerevisiae. J. Biol. Chem. 279: 31937–31942.

    PubMed  CAS  Google Scholar 

  • Almaguer, C., Mantella, D., Perez, E., and Patton-Vogt, J., 2003, Inositol and phosphate regulate GIT1 trancscription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. Eukaryot. Cell 2: 729–736.

    PubMed  CAS  Google Scholar 

  • Bentsink, L., Yuan, K., and Koornneef, V., 2003, The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor. Appl. Genet. 106: 1234–1243.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., and Irvine, R.F., 1989, Inositol phosphates and cell signaling. Nature 341: 388–389.

    Google Scholar 

  • Biswas, B.B., Biswas, S., Chakrabarti, S., and De, B.P., 1978a, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds. In Wells, W.W. and Eisenberg, F., Jr. (eds.), Cyclitols and Phosphoinositides. Academic Press, New York, pp. 57–68.

    Google Scholar 

  • Biswas, S., Maity, I.B., Chakrabarti, S., and Biswas, B.B., 1978b, Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus. Arch. Biochem. Biophys. 185: 557–566.

    PubMed  CAS  Google Scholar 

  • Brearley, C.A., and Hanke, D.E., 1996a, Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem. J. 314: 227–233

    PubMed  CAS  Google Scholar 

  • Brearley, C.A., and Hanke, D.E., 1996b, Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are sterochemically similar to the products of breakdown of Ins P6 in vitro by wheat bran phytase. Biochem. J. 318: 279–286.

    PubMed  CAS  Google Scholar 

  • Bryant, R.J., Dorsch, J.A., Rutger, J.N., and Raboy. V., 2005, Amount and distribution of phosphorus and minerals in low phytic acid 1 rice seed fractions. Cereal Chem. 82: 517–522.

    CAS  Google Scholar 

  • Caffrey, J.J., Safrany, S.T., Yang, X., and Shears, S.B., 2000, Discovery of molecular and catalytic diversity among human disphosphoinositol polyphosphate phosphohydrolases: An expanding NUDT family. J. Biol. Chem. 275: 12730–12736.

    PubMed  CAS  Google Scholar 

  • Cantley, L.C., 2002, The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    PubMed  CAS  Google Scholar 

  • Carland, F.M., and Nelson, T., 2004, COTYLDEDON VASCULAR PATTERN2-mediated Inositol (1,4,5) trisphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16: 1263–1275.

    PubMed  CAS  Google Scholar 

  • Carman, G.M., and Henry, S.A., 1989, Phospholipid biosynthesis in yeast. Annu. Rev. Biochem. 58: 635–669.

    PubMed  CAS  Google Scholar 

  • Chang, S.-C., Miller, A.L., Feng, Y., Wente, S.R., and Majerus, P.W., 2002, The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J. Biol. Chem. 277: 43836–43843.

    PubMed  CAS  Google Scholar 

  • Cheek, S., Zhang, H., and Grishin, N.V., 2002, Sequence and structure classification of kinases. J. Mol. Biol. 320: 855–881.

    PubMed  CAS  Google Scholar 

  • Donahue, T.F., and Henry, S.A., 1981, myo-Inositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256: 7077–7085.

    PubMed  CAS  Google Scholar 

  • Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T., Volkmann, C.J., Murthy, P.P.N., and Raboy, V., 2003, Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochem. 62: 691–706.

    CAS  Google Scholar 

  • Drayer, A.L., Van der Kaay, J., Mayr, G.W., and Van Haastert, P.J.M., 1994, Role of phospholipase C in Dictyostelium: Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 13: 1601–1609.

    PubMed  CAS  Google Scholar 

  • El Alami, M., Messenguy, F., Scherens, B., and Dubois, E., 2003, Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol. Microbiol. 49: 457–468.

    PubMed  Google Scholar 

  • English, P.D., Dietz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product. Science 151: 198–199.

    PubMed  CAS  Google Scholar 

  • Ercetin, E.E., and Gillaspy, G.E., 2002, Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol. 135: 938–946.

    Google Scholar 

  • Europe-Finner, G.N., Gammon, B., Wood, C.A., and Newell, P.C., 1989, Inositol tris-and polyphosphate forming during chemotaxis of Dictyostelium. J. Cell. Sci. 93, 585–592.

    PubMed  CAS  Google Scholar 

  • Flores, S., and Smart, C.C., 2000, Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211: 823–832.

    PubMed  CAS  Google Scholar 

  • Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y., and Postlethwait., 1999, Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.

    PubMed  CAS  Google Scholar 

  • Fujii, M., and York, J.D., 2004, A role for rat inositol polyphosphate kinases, rIpk2 and rIpk1, in inositol pentakisphosphate and inositol hexakisphosphate production in Rat-1 cells. J. Biol. Chem.: In Press.

    Google Scholar 

  • Gillaspy, G.E., Keddie, J.S., Oda, K., and Gruissem, W., 1995, Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185.

    PubMed  CAS  Google Scholar 

  • González, B., Schell, M.J., Letcher, A.J., Veprintsev, D.B., Irvine, R.F., and Williams, R.L., 2004, Structure of a human inositol 1,4,5-trisphosphate 3-kinase: Substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol. Cell 15: 689–701.

    PubMed  Google Scholar 

  • Greenberg, M.L., and Lopes, J.M., 1996, Genetic regulation of phospholipids biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 60: 1–20.

    PubMed  CAS  Google Scholar 

  • Greenwood, J.S., and Bewley, J.D., 1984, Subcellular distribution of phytin in the endosperm of developing castor bean: A possibility for its synthesis in the cytoplasm prior to deposition within protein bodies. Planta 160: 113–120.

    CAS  Google Scholar 

  • Guttieri, M., Bowen, D., Dorsch, J.A., Souza, E. and Raboy, V., 2004, Identification and characterization of a low phytic acid wheat. Crop Sci. 44.

    Google Scholar 

  • Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., and West, S.C., 2000, Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102: 721–729

    PubMed  CAS  Google Scholar 

  • Hanakahi, L.A., and West, S.C., 2002, Specific interaction of IP6 with human Ku70/80, the DNAbinding subunit of DNA-PK. EMBO J. 21: 2038–2044.

    PubMed  CAS  Google Scholar 

  • Hatzack, F., Hubel, F., Zhang, W., Hansen, P.E., and Rasmussen, S.K., 2001, Inositol phosphates from barley low-phytate grain mutants analyzed by metal-dye detection HPLC and NMR. Biochem. J. 354: 473–480.

    PubMed  CAS  Google Scholar 

  • Hegeman, C.E., Good, L.L., and Grabau, E.A., 2001, Expression of D-myo-Inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol. 125: 1941–1948.

    PubMed  CAS  Google Scholar 

  • Hidaka, K., Caffrey, J.J., Hua, L., Zhang, T., Falck, J.R., Nickel, G.C., Carrel, L., Barnes, L.D., and Shears, S.B., 2002, An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode tow new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J. Biol. Chem. 277: 32730–32738.

    PubMed  CAS  Google Scholar 

  • Hitz, W.D., Carlson, T.J., Kerr, P.S, and Sebastian, S.A., 2002, Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 128: 650–660.

    PubMed  CAS  Google Scholar 

  • Hua, L.V., Hidaka, K., Pesesse, X., Barnes, L.D., and Shears, S.B., 2003, Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent disphosphoinositol polyphosphate phosphohydrolases. Biochem. J. 373: 81–89.

    PubMed  CAS  Google Scholar 

  • Huang, C.-F., Voglmaier, S.M., Bembenek, M.E., Saiardi, A., and Snyder, S.H., 1998, Identification and purification of diphosphoinositol pentakisphosphate kinase, which synthesizes the inositol pyrophosphate bis(diphospho)inositol tetrakisphosphate. Biochem. 37: 14998–15004.

    CAS  Google Scholar 

  • Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G., and Bohnert, H.J., 1996, Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.

    PubMed  CAS  Google Scholar 

  • Irigoin, F., Casaravilla, C., Iborra, F., Sim, R.B., Ferreira, F., and Diaz, A., 2004, Unique precipitation and exocytosis of a calcium salt of myo-inositol hexaphosphate in larval Echinococcus granulosus. J. Cellular Biochem. 93: 1272–1281.

    CAS  Google Scholar 

  • Irigoin, F., Ferreira, F., Fernandez, C., Sim, R.B., and Diaz, A., 2002, myo-inositol hexakisphosphate is a major component of an extracellular structure in the parasitic cestode Echinococcus granulosus. Biochem J. 362: 297–304.

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., and Schell, M.J., 2001, Back in the water: The return of the inositol phosphates. Nature Rev. Mol. Cell Biol. 2: 327–338.

    CAS  Google Scholar 

  • Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M., 2003, The ATP-binding cassette transporters: Structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol. 131: 1169–1177.

    PubMed  CAS  Google Scholar 

  • Jauh, G-Y., Phillips, T.E., and Rogers, J.C., 1999, Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11: 1867–1882.

    PubMed  CAS  Google Scholar 

  • Jiang, L., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W., and Rogers, J.C., 2001, The protein storage vacuole: A unique compound organelle. J. Cell Biol. 155: 991–1002.

    PubMed  CAS  Google Scholar 

  • Karner, U., Peterbauer, T., Raboy, V., Jones, D.A., Hedley, C.L., and Richter. A., 2004, myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot. 55: 1981–1987.

    PubMed  CAS  Google Scholar 

  • Lackey, K.H., Pope, P.M., and Dean Johnson, M., 2003, Expression of 1L-myoinositol-1-phosphate synthase in organelles. Plant Physiol. 2240–2247.

    Google Scholar 

  • Larson, S.R., and Raboy, V., 1999, Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: Correspondence with a low phytic acid mutation. Theor. Appl. Genet. 99: 27–36.

    CAS  Google Scholar 

  • Larson, S.R., Rutger, J.N., Young, K.A., and Raboy, V., 2000, Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid mutation. Crop Sci. 40: 1397–1405.

    CAS  Google Scholar 

  • Larson, S.R., Young, K.A., Cook, A., Blake, T.K., and Raboy, V., 1998, Linkage mapping two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet. 97: 141–146.

    CAS  Google Scholar 

  • Laussmann, T., Pikzack, C., Thiel, U., Mayr, G.W., and Vogel, G., 2000, Diphospho-myo-inositol phosphates during the life cycle of Dictyostelium and Polysphondylium. Eur. J. Biochem. 267: 2447–2451.

    PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh, F., MacRobbie, E.A.C., and Brearley, C.A., 2000, Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc. Natl. Acad. Sci. U.S.A. 97: 8687–8692.

    PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh, F., MacRobbie, E.A.C., Webb, A.A.R., Mansion, N.F., Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D., and Brearley, C.A., 2003, Inositol hexaphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl. Acad. Sci. U.S.A 100: 10091–10095.

    PubMed  CAS  Google Scholar 

  • Liu, J.C., Ockenden, I., Truax, M., and Lott, J.N.A., 2004, Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci. Res. 14: 109–116.

    CAS  Google Scholar 

  • Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 1644–1647.

    PubMed  CAS  Google Scholar 

  • Loewus, F.A., and Murthy, P.P.N., 2000, myo-Inositol metabolism in plants. Plant Sci. 150: 1–19.

    CAS  Google Scholar 

  • Loewus, M.W., Sasaki, K., Leavitt, A.L., Munsell, L., Sherman, W.R., and Loewus, F.A., 1982, The enantiomeric form of myo-inositol-1-phosphate produced by myo-inositol 1-phosphate synthase and myo-inositol kinase in higher plants. Plant Physiol. 70: 1661–1663.

    PubMed  CAS  Google Scholar 

  • Lott, J.N.A., 1984, Accumulation of seed reserves of phosphorus and other minerals. In: Murray, D.R. (ed.), Seed Physiology. Academic Press, New York, pp. 139–166.

    Google Scholar 

  • Lott, J.N.A., Ockenden, I., Raboy, V., and Batten, G.D., 2000, Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Sci. Res. 10: 11–33.

    CAS  Google Scholar 

  • Lynch, M., and Katju, V., 2004, The altered evolutionary trajectories of gene duplicates. Trends Genet. 20: 544–549.

    PubMed  CAS  Google Scholar 

  • Maeshima, M., 2000, Vacuolar H+-pyrophosphatase. Biochimica. Biophysica. Acta. 1465: 37–51.

    CAS  Google Scholar 

  • Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P., and Majumder, A.L., 2004, A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem. 279: 28539–28552.

    PubMed  CAS  Google Scholar 

  • Majumder, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.

    PubMed  CAS  Google Scholar 

  • Martin, J.-B., Laussmann, T., Bakker-Grunwald, T., Vogel, G., and Klein, G., 2000, neo-Inositol polyphosphates in the amoeba Entamoeba histolytica. J. Biol. Chem. 275: 10134–10410.

    PubMed  CAS  Google Scholar 

  • Martinoia, E., Massonneau, A., and Frangne, N., 2000, Transport processes of solutes across the vauolar membrane of higher plants. Plant Cell Physiol. 41: 1175–1186.

    PubMed  CAS  Google Scholar 

  • Meis, S.J., Fehr, W.R., and Schnebly, S.R., 2003, Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci. 43: 1336–1339.

    Google Scholar 

  • Mitra, P., Zhang, Y., Rameh, L.E., Ivshina, M.P., McCollum, D., Nunnari, J.J., Hendricks, G.M., Kerr, M.L., Field, S.J., Cantley, L.C., and Ross, A.H., 2004, A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166: 205–211.

    PubMed  CAS  Google Scholar 

  • Morton, R.K., and Raison, J.K., 1963, A complete intracellular unit for incorporation of aminoacid into storage protein utilizing adenosine triphosphate generated from phytate. Nature 200: 429–433.

    PubMed  CAS  Google Scholar 

  • Ockenden, I., Dorsch, J.A., Reid, M.M., Lin, L., Grant, L.K., Raboy, V., and Lott, J.N.A., 2004, Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci. 167: 1131–1142.

    CAS  Google Scholar 

  • Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D., 2000, A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.

    PubMed  CAS  Google Scholar 

  • Ogas, J., Kaufmann, S., Henderson, J., and Somerville, S., 1999, Pickle is a CHD3 chromatinremodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 96: 13839–13844.

    PubMed  CAS  Google Scholar 

  • Ogawa, M., Tanaka, K., and Kasai, Z., 1979, Accumulation of phosphorus, magnesium, and potassium in developing rice grains: Followed by electron microprobe X-ray analysis focusing on the aleurone layer. Plant Cell Physiol. 20: 19–27.

    CAS  Google Scholar 

  • O’Neill, E.M., Kaffman, A., Jolly, E.R., O’Shea, E.K. 1996. Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271: 209–212.

    PubMed  CAS  Google Scholar 

  • Otegui, M.S., Capp, R., and Staehelin, L.A., 2002, Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endosplasmic reticulum. Plant Cell 14: 1311–1327.

    PubMed  CAS  Google Scholar 

  • Phillippy, B.Q., Ullah, A.H.J., and Ehrlich, K.C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds. J. Biol. Chem. 269: 28393–28399.

    PubMed  CAS  Google Scholar 

  • Raboy, V., 1997, Accumulation and storage of phosphate and minerals. In: Larkins, B.A., Vasil, I.K. (eds.), Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht Netherlands, pp. 441–477.

    Google Scholar 

  • Raboy, V., 2001, Seeds for a better future: “Low phytate” grains help to overcome malnutrition and reduce pollution. Trends in Plant Sci. 6: 458–462.

    CAS  Google Scholar 

  • Raboy, V., and Gerbasi, P., 1996, Genetics of myo-inositol phosphate synthesis and accumulation. In: Biswas, B.B., Biswas, S. (eds.), myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Plenum Press, New York, pp. 257–285.

    Google Scholar 

  • Raboy, V., Gerbasi, P.F., Young, K.A., Stoneberg, S.D., Pickett, S.G., Bauman, A.T., Murthy, P.P.N., Sheridan, W.F., and Ertl, D.S., 2000, Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 124: 355–368.

    PubMed  CAS  Google Scholar 

  • Raboy, V., Young, K.A., Dorsch, J.A., and Cook, A., 2001, Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol. 158: 489–497.

    CAS  Google Scholar 

  • Rider, S.D., Jr., Hemm, M.R., Hostetler, H.A., Li, H.-C., Chapple, C., and Ogas. J., 2004, Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219: 489–499.

    PubMed  CAS  Google Scholar 

  • Safrany, S.T., Caffrey, J.J., Yang, X., Bembenek, M.E., Moyer, M.B., Burkhart, W.A., and Shears, S.B., 1998, A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 17: 6599–6607.

    PubMed  CAS  Google Scholar 

  • Safrany, S.T., Caffrey, J.J., Yang, X., and Shears, S.B., 1999, Diphosphoinositol polyphosphates: The final frontier for inositide research? Biol. Chem. 380: 945–951.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M., and Snyder, S.H., 2004, Phosphorylation of proteins by inositol pyrophosphates. Science 306: 2101–2105.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000a, The inositol hexakisphosphate kinase family: Catalytic flexibility and function in yeast vacuole biogenesis. J. Biol. Chem. 275: 24686–24692.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000b, Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468: 28–32.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H., 1999, Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9: 1323–1326.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Nagata, E., Luo, H.R., Sawa, A., Luo, X., Snowman, A.M., and Snyder, S.H., 2001a, Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc. Natl. Acad. Sci. U.S.A 98: 2306–3211.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Nagata, E., Luo, H.R., Snowman, A.M., and Snyder, S.H., 2001b, Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276: 39179–39185.

    PubMed  CAS  Google Scholar 

  • Saiardi, A., Sciambi, C., McCaffery, J.M., Wendland, B., and Snyder, S.H., 2002, Inositol polyphosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. U.S.A. 99: 14206–14211.

    PubMed  CAS  Google Scholar 

  • Sasakawa, N., Sharif, M., and Hanley, M.R., 1995, Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50: 137–146.

    PubMed  CAS  Google Scholar 

  • Schell, M.J., Letcher, A.J., Brearley, C.A., Biber, J., Murer, H., and Irvine, R.F., 1999, PiUS (Pi uptake stimulator) is an inositol hexaphosphate kinase. FEBS Lett. 461: 169–172.

    PubMed  CAS  Google Scholar 

  • Seeds, A.M., Sandquist, J.C., Spana, E.P., and York, J.D., 2004, A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J. Biol. Chem. 279: 47222–47232.

    PubMed  CAS  Google Scholar 

  • Shears, S.B., 2001, Assessing the omnipotence of inositol hexakisphosphate. Cell. Signal. 13: 151–158.

    PubMed  CAS  Google Scholar 

  • Shears, S.B., 2004, How versatile are inositol phosphate kinases? Biochem. J. 377: 265–280.

    PubMed  CAS  Google Scholar 

  • Shen, X., Xiao, H., Ranallo, R., Wu, W.-H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol phosphates. Science 299: 112–114.

    PubMed  CAS  Google Scholar 

  • Shi, J., Wang, H., Wu, Y., Hazebroek, J., Meeley, R.B., and Ertl, D.S., 2003, The maize low phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 131: In Press.

    Google Scholar 

  • Shukla, S., VanToai, T.T., and Pratt, R.C., 2004, Expression and nucleotide sequence of an INS(3)P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.). J. Agric. Food Chem. 52: 4565–4570.

    PubMed  CAS  Google Scholar 

  • Smart, C.C., and Fleming, A.J., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J. 4: 279–293.

    PubMed  CAS  Google Scholar 

  • Sobolev, A.M., Buzulukova, N.P., Dmitrieva, M.I., and Barbashova, A.K., 1976, Structuralbiochemical organization of aleurone grains in yellow lupin. Soviet Plant Physiol. 23: 739–746.

    CAS  Google Scholar 

  • Steger, E.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O’Shea, E.K, 2003, Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116.

    PubMed  CAS  Google Scholar 

  • Stephens, L.R., and Irvine, R.F., 1990, Stepwise phosphorylation of myo-inositol leading to myoinositol hexakisphosphate in Dictyostelium. Nature 346: 580–583.

    PubMed  CAS  Google Scholar 

  • Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T.R., Hawkins, P.T., and Mayr, G.W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268: 4009–4015.

    PubMed  CAS  Google Scholar 

  • Stevenson-Paulik, J., Odom, A.R., and York, J.D., 2002, Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J. Biol. Chem. 277: 42711–42718.

    PubMed  CAS  Google Scholar 

  • Styer, J.C., Keddie, J., Spence, J., and Gillaspy, G.E., 2004, Genomic organization and regulation of the LeIMP-1 and LeIMP-2 genes encoding myo-inositol monophosphatase in tomato. Gene 326: 35–41.

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Rai, M., Kitagawa, T., Morita, S., Masumura, T., and Tanaka, K., 2004, Differential localization of tonoplast intrinsic proteins on the membrane of protein body type II and aleurone grain in rice seeds. Biosci. Biotchnol. Biochem. 68: 1728–1736.

    CAS  Google Scholar 

  • Verbsky, J.W., Chang, S.-C., Wilson, M.P., Mochizuki, Y., and Majerus, P.W., 2004, The pathway for the production of inositol hexakisphosphate (InsP6) in human cells. J. Biol. Chem.: In Press.

    Google Scholar 

  • Welters, P., Takegawa, K., Emr, S.D., and Chrispeels, M.J., 1994, ATVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding protein. Proc. Natl. Acad. Sci. U.S.A. 91: 11398–11402.

    PubMed  CAS  Google Scholar 

  • Wilson, M.P., and Majerus, P.W., 1996, Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J. Biol. Chem. 271: 11904–11910.

    PubMed  CAS  Google Scholar 

  • Wilson, M.P., and Majerus, P.W., 1997, Characterization of a cDNA encoding Arabidopsis thaliana Insoitol 1,3,4-trisphosphate 5/6-kinase. Biochem. Biophys. Res. Comm. 232: 678–681.

    PubMed  CAS  Google Scholar 

  • Xia, H.-J., Brearley, C., Elge, S., Kaplan, B., Fromm, H., and Mueller-Roeber, B., 2003, Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional Arg-Mcm1 transcription complex. Plant Cell 15: 449–463.

    PubMed  CAS  Google Scholar 

  • Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C., and Zhu, J.-K., 2001, Fiery1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Devel. 15: 1971–1984.

    PubMed  CAS  Google Scholar 

  • Yang, X., and Shears, S.B., 2000, Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase. Biochem. J. 351: 551–555.

    PubMed  CAS  Google Scholar 

  • York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.

    PubMed  CAS  Google Scholar 

  • Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., and Naito, S., 1999, Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119: 65–72.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Raboy, V., Bowen, D. (2006). Genetics of Inositol Polyphosphates. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_4

Download citation

Publish with us

Policies and ethics