Skip to main content

Cytochrome P450 and the Metabolism and Bioactivation of Arachidonic Acid and Eicosanoids

  • Chapter
Cytochrome P450

4. Conclusion

The studies of the P450 AA monooxygenase have uncovered new and important roles for P450 in the metabolism of endogenous substrates, and added P450 to the list of enzymes that participate in the metabolism of AA, a fatty acid that serves as the precursor for the biosynthesis of several physiologically important lipid mediators. The functional relevance of this metabolic pathway is suggested by the many important biological activities attributed to its products. These studies, as well as the documented endogenous roles of P450s in cholesterol, steroid, and vitamin metabolism are contributing to establish this enzyme system as a major participant in the regulation of cell, organ, and body physiology. Among these, the phenotypic analysis of mice carrying disrupted copies of the CYP4a14 gene unveiled new and important roles for the P450 enzymes in cardiovascular physiology and the control of systemic blood pressures, and suggested the human homologs of the rodent CYP 2C and 4A AA epoxygenases and ω-hydroxylases as candidate genes for the study of their role in the pathophysiology of hypertension, and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, W.L., D.L. DeWitt, and R.M. Garavito (2000). Cyclooxygenases: Structural, cellular, and molecular biology. Ann. Rev. Biochem. 69, 145–182, and cited references.

    PubMed  CAS  Google Scholar 

  2. Prescott, S.M. and C. Yang (2002). Many actions of cyclooxygenase-2 in cellular dynamics and in Cancer. J. Cell. Biol. 190, 279–286.

    Google Scholar 

  3. Brash, A.R. (1999). Lipoxygenases: Occurrence, function, catalysis, and acquisition substrate. J. Biol. Chem. 274, 23679–23680, and cited references.

    PubMed  CAS  Google Scholar 

  4. Capdevila, J.H. and J.R. Falck (2001). The CYP P450 arachidonic acid monooxygenases: From cell signaling to blood pressure regulation. Biochem. Biophys. Res. Comm. 285, 571–576, and cited references.

    PubMed  CAS  Google Scholar 

  5. Capdevila, J.H. and J.R. Falck (2002). Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins other Lipid Mediat. 68–69, 325–344, and cited references.

    PubMed  Google Scholar 

  6. McGiff, J.C. and J. Quilley (1999). 20-HETE and the kidney: Resolution of old problems and new beginnings. Am. J. Physiol. 277, R607–R623, and cited references.

    PubMed  CAS  Google Scholar 

  7. McGiff, J.C. and J. Quilley (2001). 20-Hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids and blood pressure. Curr. Opin. Nephrol. Hypertens. 10, 31–237, and cited references.

    Google Scholar 

  8. Imig, J.D. (2000). Eicosanoid regulation of renal vasculature. Am. J. Physiol. 279, F965–F981, and cited references.

    CAS  Google Scholar 

  9. Campbell, W.B. and D.R. Harder (1999). Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circ. Res. 84, 484–488, and cited references.

    PubMed  CAS  Google Scholar 

  10. Roman, R.J. (2002). P450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185, and cited references.

    PubMed  CAS  Google Scholar 

  11. Capdevila, J.H., N. Chacos, J. Werringloer, R.A. Prough, and R.W. Estabrook (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of AA. Proc. Natl. Acad. Sci. USA 78, 5362–5366.

    PubMed  CAS  Google Scholar 

  12. Morrison, A.R. and N. Pascoe (1981). Metabolism of AA through NADPH-dependent oxygenase of renal cortex. Proc. Natl. Acad. Sci. USA 78, 7375–7378.

    PubMed  CAS  Google Scholar 

  13. Oliw, E.H. and J.A. Oates (1981). Oxygenation of AA by hepatic microsomes of the rabbit. Mechanism of biosynthesis of two vicinal diols. Biochim. Biophys. Acta 666, 327–340.

    PubMed  CAS  Google Scholar 

  14. Jacobson, H.R., S. Corona, J.H. Capdevila, N. Chacos, S. Manna, A. Womack et al. (1984). Effects of epoxyeicosatrienoic acids on ion transport in the rabbit cortical collecting tubule. In P. Braquet, J.C. Frolich, S. Nicosia, and R. Garay (eds), Prostaglandins and Membrane Ion Transport. Raven Press, New York, p. 311.

    Google Scholar 

  15. Karara, A., E. Dishman, I. Blair, J.R. Falck, and J.H. Capdevila (1989). Endogenous epoxyeicosatrienoic acids. Cytochrome P-450 controlled stereoselectivity of the hepatic arachidonic acid epoxygenase. J. Biol. Chem. 264, 19822–19827.

    PubMed  CAS  Google Scholar 

  16. Kupfer, D. (1982). Endogenous substrates of monooxygenases: Fatty acids and prostaglandins. In J.B. Schenkman and D. Kupfer (eds), Hepatic Cytochrome P-450 Monooxygenase System. Pergamon Press, New York, pp. 157–187.

    Google Scholar 

  17. Sharma, R.K., M.V. Doig, D.F.V. Lewis, and G. Gibson (1989). Role of hepatic and renal cytochrome P450 IVA1 in the metabolism of lipid substrates. Biochem. Pharmacol. 38, 3621–3629.

    PubMed  CAS  Google Scholar 

  18. Imaoka, S., S. Tanaka, and Y. Funae (1989). (ω/ω-1) hydroxylation of lauric acid and arachidonic acid by rat renal cytochrome P-450. Biochem. Int. 18, 731–740.

    PubMed  CAS  Google Scholar 

  19. Johnson, E.F., D.L. Walker, and K.J. Griffin (1990). Cloning and expression of three rabbit kidney cDNAs encoding lauric acid-hydroxylases. Biochemistry 29, 873–879.

    PubMed  CAS  Google Scholar 

  20. Kikuta, Y., E. Kusunose, and M. Kusunose (2002). Prostaglandin and leukotriene ω-hydroxylases. Prostaglandins other Lipid Mediat. 68–69, 325–344, and cited references.

    Google Scholar 

  21. Rahimtula, A.D. and P.J. O’Brien (1974). Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450. Biochem. Biophys. Res. Commun. 60, 440–447.

    PubMed  CAS  Google Scholar 

  22. Weiss, R.H., J.L. Arnold, and R.W. Estabrook (1987). Transformation of an arachidonic acid hydroperoxide into epoxyhydroxy and trihydroxy fatty acids by liver microsomal cytochrome P-450. Arch. Biochem. Biophys. 252, 334–338.

    PubMed  CAS  Google Scholar 

  23. Hecker, M. and V. Ullrich (1989). On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J. Biol. Chem. 264, 141–150.

    PubMed  CAS  Google Scholar 

  24. Hara, S., A. Miyata, C. Yokoyama, R. Brugger, F. Lottspeich, V. Ullrich et al. (1995). Molecular cloning and expression of prostacyclin synthase from endothelial cells. Adv. Prostaglandin Thromboxane Leukot. Res. 23, 121–123.

    PubMed  CAS  Google Scholar 

  25. Yokoyama, C., A. Miyata, H. Ihara, V. Ullrich, and T. Tanabe (1991). Molecular cloning of the human platelet thromboxane A synthase. Biochem. Biophys. Res. Commun. 178, 1479–1484.

    PubMed  CAS  Google Scholar 

  26. Ohashi, K., K.H. Ruan, R.J. Kulmacz, K.K. Wu, and L.H. Wang (1992). Primary structure of human thromboxane synthase determined from the cDNA sequence. J. Biol. Chem. 267, 789–793

    PubMed  CAS  Google Scholar 

  27. White, R.E. and M.G. Coon (1980). Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. 49, 315–356, and references therein.

    PubMed  CAS  Google Scholar 

  28. Wong, P.Y.K., K.U. Malik, B.M. Taylor, W.P. Schneider, J.C. McGiff, and F.F. Sun (1985). Epoxidation of prostacyclin in the rabbit kidney. J. Biol. Chem. 260, 9150–9153.

    PubMed  CAS  Google Scholar 

  29. Oliw, E.H. (1984). Metabolism of 5(6)-epoxyeicosatrienoic acid by ram seminal vesicles formation of novel prostaglandin E1 metabolites. Biochim. Biophys. Acta. 793, 408–415.

    PubMed  CAS  Google Scholar 

  30. Zhang, J.Y., C. Prakash, K. Yamashita, and I.A. Blair (1992). Regiospecific and enantioselective metabolism of 8,9-epoxyeicosatrienoic acids by cyclooxygenase. Biochem. Biophys. Res. Commun. 183, 138–143.

    PubMed  CAS  Google Scholar 

  31. Jajoo, H.K., J.H. Capdevila, J.R. Falck, R.K. Bhatt, and I.A. Blair (1992). Metabolism of 12(R)-hydroxy-eicosatetraenoic acid by rat liver microsomes. Biochim. Biophys. Acta 1123, 110–116.

    PubMed  CAS  Google Scholar 

  32. Capdevila, J., P. Mosset, P. Yadagiri, Sun Lumin, and J.R. Falck (1988). NADPH-Dependent microsomal metabolism of 14,15-epoxyeicosatrienoic acid to diepoxides and epoxyalcohols. Arch. Biochem. Biophys. 261, 122–132.

    PubMed  CAS  Google Scholar 

  33. Cowart, L.A., S. Wei, M.-S. Hsu, E.F. Johnson, M.U. Krishna, J.R. Falck et al. (2002). The CYP 4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 277, 35105–35112.

    PubMed  CAS  Google Scholar 

  34. Hamberg, M. and B. Samuelsson (1966). Prostaglandins in human seminal plasma. Prostaglandins and related factors. J. Biol. Chem. 241, 257–263.

    PubMed  CAS  Google Scholar 

  35. Israelson, U., M. Hamberg, and B. Samuelsson (1969). Biosynthesis of 19-hydroxy-prostaglandin A1. Eur. J. Biochem. 11, 390–394.

    Google Scholar 

  36. Kupfer, D., I. Jansson, L.V. Favreau, A.D. Theoharides, and J.B. Schenkman (1988). Regioselective hydroxylation of prostaglandins by constitutive forms of cytochrome P-450 from rat liver: Formation of a novel metabolite by a female-specific P-450. Arch. Biochem. Biophys. 262, 186–195.

    Google Scholar 

  37. Matsubara, S., S. Yamamoto, K. Sogawa, N. Yokotani, Y. Fujii-Kuriyama, M. Haniu et al. (1987). cDNA cloning and inducible expression during pregnancy of the MRNA for rabbit pulmonary prostaglandin ω-hydroxylase (cytochrome P-450p-2). J. Biol. Chem. 62, 13366–13371.

    Google Scholar 

  38. Sharma, R.K., M.V. Doig, D.F.V. Lewis, and G. Gibson (1989). Role of hepatic and renal cytochrome P450 IVA1 in the metabolism of lipid substrates. Biochem. Pharmacol. 38, 3621–3629.

    PubMed  CAS  Google Scholar 

  39. Yokotani, N., R. Bernhardt, K. Sogawa, E. Kusunose, O. Gotoh, M. Kusunose et al. (1989). Two forms of ω-hydroxylase toward prostaglandin A and laurate. cDNA cloning and their expression. J. Biol. Chem. 264, 21665–21669.

    PubMed  CAS  Google Scholar 

  40. Kusonuse, E., A. Sawamura, H. Kawashima, I. Kubota, and M. Kusunose (1989). Isolation of a new form of cytochrome P450 with prostaglandin A and fatty acid ω-hydroxylase activities from rabbit kidney cortex microsomes. J. Biochem. 106, 194–206.

    Google Scholar 

  41. Kikuta, Y., E. Kusunose, T. Okumoto, I. Kubota, and M. Kusunose (1990). Purification and partial characterization of two forms of cytochrome P450 with ω-hydroxylase activity towards prostaglandin A and fatty acids from rat liver microsomes. J. Biochem. 107, 280–286

    PubMed  CAS  Google Scholar 

  42. Roman, L.J., C.A.N. Palmer, J.E. Clark, A.S. Muerhoff, K.J. Griffin, E.F. Johnson et al. (1993). Expression of rabbit cytochrome P4504A which catalyzes the ω-hydroxylation of fatty acids, and prostaglandins. Arch. Biochem. Biophys. 307, 57–67.

    PubMed  CAS  Google Scholar 

  43. Bylund, J., M. Hidestrand, M. Ingelman-Sundberg, and E.H. Oliw (2000). Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. J. Biol. Chem. 275, 21844–21849.

    PubMed  CAS  Google Scholar 

  44. Lasker, J.M., B.W. Chen, I. Wolf, B.P. Blswck, P.D. Wilson, and P.K. Powell (2000). Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid in human kidney. J. Biol. Chem. 264, 17845–17853.

    Google Scholar 

  45. An updated list of P450 genes and sequences is found at: http://drnelson.utmem.edu/CytochromeP450.html

    Google Scholar 

  46. Imaoka, S., H. Ogawa, S. Kimura, and F.J. Gonzalez (1993). Complete cDNA sequence and cDNA-directed expression of CYP4A11, a fatty acid omega-hydroxylase expressed in human kidney. DNA Cell Biol. 12, 893–899.

    PubMed  CAS  Google Scholar 

  47. Kawashima, H., T. Naganuma, E. Kusunose, T. Kono, R. Yasumoto, K. Sugimura et al. (2000). Human fatty acid ω-hydroxylase, CYP 4A11: Determination of complete genomic sequence and characterization of purified recombinant protein. Arch. Biochem. Biophys. 378, 333–339.

    PubMed  CAS  Google Scholar 

  48. Bellamine, A., Y. Wang, M.R. Waterman, J.V. Gainer, E. Dawson, N.J. Brown et al. (2003). Characterization of the CYP4A11 gene, a second CYP4A gene in humans. Arch. Biochem. Biophys. 409, 221–227.

    PubMed  CAS  Google Scholar 

  49. Wang, M.H., D.E. Stec, M. Balazy, V. Mastyugin, C.S. Yang, R.J. Roman et al. (1997). Cloning, sequencing, and cDNA-directed expression of rat renal CYP4A2: AA ω-hydroxylation and 11,12-epoxidation by CYP4A2 protein. Arch. Biochem. Biophys. 336, 240–250.

    Google Scholar 

  50. Helvig, C., E. Dishman, and J.H. Capdevila (1998). Molecular, enzymatic, and regulatory characterization of rat kidney cytochromes P450 4A2 and 4A3. Biochemistry 37, 12546–12558.

    PubMed  CAS  Google Scholar 

  51. Hoch, U., Z. Zhang, D.L. Kroetz, and P.R. Ortiz de Montellano (2000). Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega hydroxylases. Arch. Biochem. Biophys. 373, 63–71.

    PubMed  CAS  Google Scholar 

  52. Nishimoto, M., J.E. Clark, and B.S.S. Masters (1993). Cytochrome P450 4A4: Expression in Escherichia coli, purification, and characterization of catalytic properties. Biochemistry 32, 8863–8870.

    PubMed  CAS  Google Scholar 

  53. Bylund, J., M. Bylund, and E.H. Oliw (2001). cDNA cloning and expression of CYP4F12, a novel human cytochrome P450. Biochem. Biophys. Res. Commun. 280, 892–897.

    PubMed  CAS  Google Scholar 

  54. Yokomizo, T., T. Izumi, and T. Shimizu (2001). Leukotriene B4: Metabolism and signal transduction. Arch. Biochem. Biophys. 385, 231–241, and cited references.

    PubMed  CAS  Google Scholar 

  55. Haeggstrom, J.Z. and A. Wetterholm (2002). Enzymes and receptors in the leukotriene cascade. Cell. Mol. Life Sci. 59, 742–753, and cited references.

    PubMed  CAS  Google Scholar 

  56. Powell, W.S. (1984). Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes. J. Biol. Chem. 259, 3082–3089.

    PubMed  CAS  Google Scholar 

  57. Shak, S. and I.M. Goldstein (1984). Oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. J. Biol. Chem. 259, 10181–10187.

    PubMed  CAS  Google Scholar 

  58. Romano, M.C., R.D. Eckardt, P.E. Bender, T.B. Leonard, K.M. Straub, and J.F. Newton (1987). Biochemical characterization of hepatic microsomal leukotriene B4 hydroxylases. J. Biol. Chem. 262, 1590–1595.

    PubMed  CAS  Google Scholar 

  59. Soberman, R.J., R.T. Okita, B. Fitzsimmons, J. Rokach, B. Spur, and K.F. Austen (1987). Stereochemical requirements for substrate specificity of LTB4 20-hydroxylase. J. Biol. Chem. 262, 12421.

    PubMed  CAS  Google Scholar 

  60. Sumimoto, J., K. Takeshige, and S. Minakami (1988). Characterization of human neutrophil leukotriene B4 omega-hydroxylase, a system involving a unique cytochrome P-450 and NADPH-cytochrome P-450 reductase. Eur. J. Biochem. 172, 315–324.

    PubMed  CAS  Google Scholar 

  61. Kikuta, Y., E. Kusunose, K. Endo, S. Yamamoto, K. Sogawa, Y. Fujii-Kuriyama et al. (1993). A novel form of cytochrome P450 family 4 in human polymorphonuclear leukocytes. cDNA cloning and expression of leukotriene B4 ω-hydroxylase. J. Biol. Chem. 268, 9376–9380.

    PubMed  CAS  Google Scholar 

  62. Kikuta, Y., E. Kusunose, H. Sumimoto, Y. Mizukami, K. Takeshige, T. Sakai et al. (1998). Purification and characterization of recombinant human neutrophil leukotriene B4 ω-hydroxylase (Cytochrome 4F3). Arch. Biochem. Biophys. 355, 201–205.

    PubMed  CAS  Google Scholar 

  63. Christmas, P., S.R. Ursino, J.W. Fox, and R.J. Soberman (1999). Expression of the CYP4F3 gene: Tissue-specific splicing and alternative promoters generate high and low Km forms of leukotriene B4 ω-hydroxylase. J. Biol. Chem. 274, 21191–21199.

    PubMed  CAS  Google Scholar 

  64. Kikuta, Y., E. Kusunose, M. Ito, and M. Kusunose (1999). Purification and characterization of recombinant rat hepatic 4F1. Arch. Biochem. Biophys. 369, 193–196.

    PubMed  CAS  Google Scholar 

  65. Jin, R., D.R. Koop, J.L. Raucy, and J.M. Lasker (1998). Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent, leukotriene B4. Arch. Biochem. Biophys. 359, 89–98.

    PubMed  CAS  Google Scholar 

  66. Kawashima, H., E. Kusunose, C.M. Thompson, and H.W. Strobel (1997). Protein expression, characterization, and regulation of CYP4F4 and CYP4F5 cloned from rat brain. Arch. Biochem. Biophys. 347, 148–154.

    PubMed  CAS  Google Scholar 

  67. Wong, P.Y.K., P. Westlund, M. Hamberg, E. Granstrom, P.W.H. Chao, and B. Samuelsson (1984). ω-Hydroxylation of 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid in human polymorphonuclear leukocytes. J. Biol. Chem. 259, 2683–2686.

    PubMed  CAS  Google Scholar 

  68. Marcus, A.J., L.B. Safier, H.L. Ullman, N. Broekman, T. Islam, D. Oglesby et al. (1984). 12S, 20-Dihydroxyeicosatetraenoic acid: A new icosanoid synthesized by neutrophils from 12S-hydroxyeicosatetraenoic acid produced by thrombin-or collagen-stimulated platelets. Proc. Natl. Acad. Sci. USA 81, 903–907.

    PubMed  CAS  Google Scholar 

  69. Flaherty, J.T. and J. Nishihira (1987). 5-Hydroxyeicosatetraenoate promotes Ca2+ and protein kinase C mobilization in neutrophils. Biochem. Biophys. Res. Commun. 148, 575–579.

    Google Scholar 

  70. Okita, R.T., R.J. Soberman, J.M. Bergholte, B.S.S. Masters, R. Hayes, and R.C. Murphy (1987). ω-Hydroxylation of 15-hydroxyeicosatetraenoic acid by lung microsomes from pregnant rabbits. Mol. Pharmacol. 32, 706–709.

    PubMed  CAS  Google Scholar 

  71. Capdevila, J.H., A. Karara, D.J. Waxman, M.V. Martin, J.R. Falck, and F.P. Guengerich (1990). Cytochrome P-450 enzyme-specific control of the regio-and enantiofacial selectivity of the microsomal AA epoxygenase. J. Biol. Chem. 265, 10865–10871.

    PubMed  CAS  Google Scholar 

  72. Knickle, L.C. and J.R. Bend (1994). Bioactivation of arachidonic acid by the cytochrome P450 monooxygense of guinea pig lung: The orthologue of cytochrome P450 2B4 is solely responsible for the formation of epoxyeicosatrienoic acids. Mol. Pharmacol. 45, 1273–1280.

    PubMed  CAS  Google Scholar 

  73. Laethem, R.M., J.R. Halpert, and D.R. Koop (1994). Epoxidation of arachidonic acid as an active site probe of cytochrome P450 2B isoforms. Biochim. Biophys. Acta 1206, 42–48.

    PubMed  CAS  Google Scholar 

  74. Keeney, D.S., C. Skinner, S. Wei, T. Friedberg, and M.R. Waterman (1998). A keratinocyte-specific epoxygenase, CYP2B12, metabolizes arachidonic acid with unusual selectivity, producing a single major epoxyeicosatrienoic acid. J. Biol. Chem. 273, 9279–9284.

    PubMed  CAS  Google Scholar 

  75. Keeney, D.S., C. Skinner, J.B. Travers, J.H. Capdevila, J.B. Nanney, L.E. King et al. (1998). Differentiating keratinocytes express a novel cytochrome P450 enzyme, CYP2B19, having arachidonate monooxygenase activity. J. Biol. Chem. 273, 32071–32079.

    PubMed  CAS  Google Scholar 

  76. Capdevila, J.H., S. Wei, Y. Yan, A. Karara, H.R. Jacobson, J.R. Falck et al. (1992). Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J. Biol. Chem. 267, 21720–21726.

    PubMed  CAS  Google Scholar 

  77. Karara, A., K. Makita, H.R. Jacobson, J.R. Falck, F.P. Guengerich, R.N. DuBois et al. (1993). Molecular cloning, expression, and enzymatic characterization of the rat kidney cytochrome P-450 arachidonic acid epoxygenase. J. Biol. Chem. 268, 13565–13570.

    PubMed  CAS  Google Scholar 

  78. Imaoka, S., P.J. Zwedlung, H. Ogawa, S. Kimura, F.J. Gonzalez, and H.Y. Kim (1993). Identification of CYP2C23 expressed in rat kidney as an arachidonic acid epoxygenase. J. Pharmacol. Exp. Ther. 267, 1012–1016.

    PubMed  CAS  Google Scholar 

  79. Daikh, B.E., R.M. Laethem, and D. Koop (1994). Stereoselective epoxidation of arachidonic acid by cytochrome P-450s 2CAA and 2C2. J. Pharmacol. Exp. Ther. 269, 1130–1135.

    PubMed  CAS  Google Scholar 

  80. Rifkind, A.B., C. Lee, T.K. Chang, and D.J. Waxman (1995). Arachidonic acid metabolisms by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: Regioslective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch. Biochem. Biophys. 320, 380–389.

    PubMed  CAS  Google Scholar 

  81. Zeldin, D.C., R.N. DuBois, J.R. Falck, and J.H. Capdevila (1995). Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch. Biochem. Biophys. 322, 76–86.

    PubMed  CAS  Google Scholar 

  82. Luo, G., D.C. Zeldin, J.A. Blaisdell, E. Hodgson, and J.A. Goldstein (1998). Cloning, and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch. Biochem. Biophys. 357, 45–57.

    PubMed  CAS  Google Scholar 

  83. Tsao, C.C., S.J. Coulter, A. Chien, G. Luo, N.P. Clayton, R. Maronpot et al. (2001). Identification and localization of five CYP2Cs in murine extrahepatic tissues and their metabolism of arachidonic acid to regio-and stereoselective products. J. Pharmacol. Exp. Ther. 299, 39–47.

    PubMed  CAS  Google Scholar 

  84. Thompson, C.M., J.H. Capdevila, and H.W. Strobel (2000). Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. J. Pharmacol. Exp. Ther. 294, 1120–1130.

    PubMed  CAS  Google Scholar 

  85. Laethem, R.M., M. Balazy, J.R. Falck, C.L. Laethem, and D.R. Koop (1993). Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1. J. Biol. Chem. 268, 12912–12918.

    PubMed  CAS  Google Scholar 

  86. Scarborough, P.E., J. Ma, W. Qy, and D.C. Zeldin (1999). P450 subfamily CYP2J and their role in the bioactivation of arachidonic acid in extrahepatic tissues. Drug Metab. Rev. 31, 205–234, and cited references.

    PubMed  CAS  Google Scholar 

  87. Zeldin, D.C. (2001). Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276, 36059–36062, and cited references.

    PubMed  CAS  Google Scholar 

  88. Oliw, E.H. (1993). bis-Allylic hydroxylation of linoleic acid and AA by human hepatic monooxygenases. Biochim. Biophys. Acta 1166, 258–263.

    PubMed  CAS  Google Scholar 

  89. Brash, A.R., W.E. Boeglin, J.H. Capdevila, S. Yeola, and I.A. Blair (1995). 7-HETE, 10-HETE, and 13-HETE are major products of NADPH-dependent AA metabolism in rat liver microsomes: Analysis of their stereochemistry, and the stereochemistry of their acid-catalyzed rearrangement. Arch. Biochem. Biophys. 321, 485–492.

    PubMed  CAS  Google Scholar 

  90. Capdevila, J.H., P. Yadagiri, S. Manna, and J.R. Falck (1986). Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of AA by microsomal cytochrome P-450. Biochem. Biophys. Res. Commun. 141, 1007–1011.

    PubMed  CAS  Google Scholar 

  91. Woollard, P.M. (1986). Stereochemical differences between 12-hydroxy-5,8,10,14-eicosatetraenoic acid in platelets and psoriatic lesions. Biochem. Biophys. Res. Commun. 136, 169–176.

    PubMed  CAS  Google Scholar 

  92. Boeglin, W.E., R.B. Kim, and A.R. Brash (1998). A 12R-lipoxygenase in human skin: Mechanistic evidence, molecular cloning, and expression. Proc. Natl. Acad. Sci. USA 95, 6744–6749.

    PubMed  CAS  Google Scholar 

  93. Sun D., M. McDonnel, X.S. Chen, M.M. Lakkis, S.N. Isaacs, S.H. Elsea et al. (1998). Human 12 (R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment. J. Biol. Chem. 273, 33540–33547.

    PubMed  CAS  Google Scholar 

  94. Schwartzman, M.L., M. Balazy, J. Masferrer, N.G. Abraham, J.C. McGiff, and R.C. Murphy (1987). 12(R)-Hydroxyeicosatetraenoic acid: A cytochrome P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea. Proc. Natl. Acad. Sci. USA 84, 8125–8129.

    PubMed  CAS  Google Scholar 

  95. Oliw, E.H. (1993). Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by bovine corneal epithelium. Acta Physiol. Scand. 147, 117–121.

    PubMed  CAS  Google Scholar 

  96. Murphy, R.C., J.R. Falck, S. Lumin, P. Yadagiri, J.A. Zirrolli, M. Balazy et al. (1988). 12 (R)-Hydroxyeicosatrienoic acid: A vasodilator cytochrome P-450-dependent arachidonate metabolite from bovine corneal epithelium. J. Biol. Chem. 263, 17197–17202.

    PubMed  CAS  Google Scholar 

  97. Lu, A.Y., H.K. Junk, and M.J. Coon (1969). Resolution of the cytochrome P-450 containing ω-hydroxylation system of liver microsomes into three components. J. Biol. Chem. 244, 3714–3721.

    PubMed  CAS  Google Scholar 

  98. Capdevila, J.H., S. Wei, C. Helvig, J.R. Falck, Y. Belosludtsev, G. Truan et al. (1996). The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J. Biol. Chem. 271, 22663–22671.

    PubMed  CAS  Google Scholar 

  99. Graham-Lorence, S., G. Truan, J.A. Peterson, J.R. Falck, S. Wei, and C. Helvig et al. (1997). An active site substitution, F87V, converts cytochrome P450 BM3 into a regio-and stereoselective (14)S,15 (R)-AA epoxygenase. J. Biol. Chem. 272, 1127–1135.

    PubMed  CAS  Google Scholar 

  100. Holla, V.R., F. Adas, J.D. Imig, X. Zhao, E. Price, N. Olsen et al. (2001). Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension. Proc. Natl. Acad. Sci. USA 98, 5211–5216.

    PubMed  CAS  Google Scholar 

  101. Henderson, C.J., A.R. Scott, C.S. Yang, and C.R. Wolf (1990). Testosterone-mediated regulation of mouse renal cytochrome P-450 isoenzymes. Biochem. J. 266, 675–681.

    PubMed  CAS  Google Scholar 

  102. Lund, J., P.G. Zaphiropoulos, A. Mode, M. Warner, and J.A. Gustafsson (1991). Hormonal regulation of cytochrome P450 gene expression. Adv. in Pharmacol. 22, 325–354, and cited references.

    CAS  Google Scholar 

  103. Henderson, C.J. and C.R. Wolf (1991). Evidence that the androgen receptor mediates sexual differentiation of mouse renal cytochrome P450 expression. Biochem. J. 278, 499–503.

    PubMed  CAS  Google Scholar 

  104. Sundseth, S.S. and D.J. Waxman (1992). Sexdependent expression and clofibrate inducibility of cytochrome P450 AA fatty acid ω-hydroxylases. J. Biol. Chem. 267(6), 3915–3921.

    PubMed  CAS  Google Scholar 

  105. Lee, S.S., T. Pineau, J. Frago, E.J. Lee, J.W. Owens, D.L. Kroetz et al. (1995). Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisomal proliferators. Mol. Cell. Biol. 15, 3012–3022.

    PubMed  CAS  Google Scholar 

  106. Waxman, D.J. and T.K.H. Chang (1995). Hormonal regulation of liver cytochrome P450 enzymes. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry, 2nd edn. Plenum Press, New York, pp. 391–418.

    Google Scholar 

  107. Waxman, D.J. (1999). P450 gene induction by structurally diverse xenochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 369, 11–23.

    PubMed  CAS  Google Scholar 

  108. Savas, U., M-H. Hsu, and E.F. Johnson (2003). Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Arch. Biochem. Biophys. 409, 212–220.

    PubMed  CAS  Google Scholar 

  109. Stromsteadt, M., S. Hayashi, P.G. Zaphiropoulos, and J.A. Gustafsson (1990). Cloning and characterization of a novel member of the cytochrome P450 subfamily IVA in rat prostate. DNA Cell Biol. 8, 569–577.

    Google Scholar 

  110. Heng, Y.M., C.S. Kuo, P.S. Jones, R. Savory, R.M. Schultz, S.R. Tomlinson et al. (1997). A novel murine P-450 gene, Cyp4a14, is part of a cluster of Cyp4a and Cyp4b, but not of CYP4F, genes in mouse and humans. Biochem. J. 325, 741–749.

    PubMed  CAS  Google Scholar 

  111. Falck, J.R., S. Lumin, I.A. Blair, E. Dishman, M.V. Martin, D.J. Waxman et al. (1990). Cytochrome P-450-dependent oxidation of arachidonic acid to 16-, 17-, and 18-hydroxyeicosatetraenoic acids. J. Biol. Chem. 265, 10244–10249.

    PubMed  CAS  Google Scholar 

  112. Rifkind, A.B., A. Kanetoshi, J. Orlinick, J.H. Capdevila, and C. Lee (1994). Purification and biochemical characterization of two major cytochrome P-450 isoforms induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in chick embryo liver. J. Biol. Chem. 269, 3387–3396.

    PubMed  CAS  Google Scholar 

  113. Qu, W., J.A. Bradbury, C-C. Tsao, R. Maronpot, G.J. Harry, C.E. Parker et al. (2001). Cytochrome P450 CYP2J9, a new mouse arachidonic acid ω-1 hydroxylase predominantly expressed in brain. J. Biol. Chem. 276(27), 25467–25479.

    PubMed  CAS  Google Scholar 

  114. Marji, J.S., M.H. Wang, and M. Laniado-Schwartzman (2002). Cytochrome P-450 4A isoform expression and 20-HETE synthesis in renal preglomerular arteries. Am. J. Physiol. 283, F60–F67.

    CAS  Google Scholar 

  115. Hashimoto, T., T. Fujita, N. Usuda, W. Cook, C. Qi, J.M. Peters et al. (1999). Peroxisomal and mitochondrial fatty acid oxidation in mice nullizygous for both peroxisome proliferator-activated receptor and peroxisomal fatty acyl-CoA oxidase. Genotype correlate with fatty liver phenotype. J. Biol. Chem. 274, 19228–19236.

    PubMed  CAS  Google Scholar 

  116. Chacos, N., J.F. Falck, C. Wixtrom, and J. Capdevila (1982). Novel epoxides formed during the liver cytochrome P-450 oxidation of AA. Biochem. Biophys. Res. Commun. 104, 916–922.

    PubMed  CAS  Google Scholar 

  117. Karara, A., E. Dishman, J.R. Falck, and J.H. Capdevila (1991). Endogenous epoxyeicosatrienoyl-phospholipids. A novel class of cellular glycerolipids containing epoxidized arachidonate moieties. J. Biol. Chem. 266, 7561–7569.

    PubMed  CAS  Google Scholar 

  118. Fang, X., T.L. Kaduce, M. VanRollins, N.L. Weintraub, and A.A. Spector (2000). Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts. J. Lipid Res. 41, 66–74.

    PubMed  CAS  Google Scholar 

  119. Zeldin, D.C., J. Kobayashi, J.R. Falck, B.S. Winder, B.D. Hammock, J.R. Snapper et al. (1993). Regio-and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase. J. Biol. Chem. 268, 6402–6407.

    PubMed  CAS  Google Scholar 

  120. Spearman, M.E., R.A. Prough, R.W. Estabrook, J.R. Falck, S. Manna, K.C. Leibman et al. (1985). Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs). Arch. Biochem. Biophys. 242, 225–230.

    PubMed  CAS  Google Scholar 

  121. Yu, Z., F. Xu, L.M. Huse, C. Morisseau, A.J. Draper, J.W. Newman et al. (2000). Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 87, 992–998.

    PubMed  CAS  Google Scholar 

  122. Sinal, C.J., M. Miyata, M. Tohkin, K. Nagata, J.R. Bend, and F.J. Gonazalez (2000). Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J. Biol. Chem. 275, 40504–40510.

    PubMed  CAS  Google Scholar 

  123. Holla, V., K. Makita, P.G. Zaphiropoulos, and J.H. Capdevila (1999). The kidney cytochrome P450 2C23 AA epoxygenase is upregulated during dietary salt loading. J. Clin. Invest. 104, 751–760.

    PubMed  CAS  Google Scholar 

  124. Rifkind, A.B., A. Kanetoshi, J. Orlinick, J.H. Capdevila, and C. Lee (1994). Purification and biochemical characterization of two major cytochrome P-450 isoforms induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in chick embryo liver. J. Biol. Chem. 269, 3387–3396.

    PubMed  CAS  Google Scholar 

  125. Campbell, W.B., D. Gebremedhin, P.F. Pratt, and D.R. Harder (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Cir. Res. 78, 415–423.

    CAS  Google Scholar 

  126. Fisslthaler, B., R. Popp, L. Kiss, M. Potente, D.R. Harder, I. Fleming et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 410, 493–497.

    Google Scholar 

  127. Imig, J.D., J.R. Falck, S. Wei, and J.H. Capdevila (2001). Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin. J. Vasc. Res. 38, 247–255.

    PubMed  CAS  Google Scholar 

  128. Imig, J.D., X. Zhao, J.R. Falck, S. Wei, and J.H. Capdevila (2001). Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J. Hypertension 19, 983–992.

    CAS  Google Scholar 

  129. Karara, A., S. Wei, S.D. Spady, L. Swift, J.H. Capdevila, and J.R. Falck (1992). Arachidonic acid epoxygenase: Structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochem. Biophys. Res. Commun. 182, 1320–1325.

    PubMed  CAS  Google Scholar 

  130. Capdevila, J.H., Y. Jin, A. Karara, and J.R. Falck (1993). Cytochrome P450 epoxygenase dependent formation of novel endogenous epoxyeicosatrienoyl-phospholipids. In S. Nigam, L.J. Marnett, K.V. Honn, and T.L. Walden Jr. (eds), Eicosanoids and Other Bioactive Lipids in Cancer, Inflamation and Radiation Injury. Kluwer Academic Publishers, Boston, MA, pp. 11–15.

    Google Scholar 

  131. Zou, A.P., J.T. Fleming, J.R. Falck, E.R. Jacobs, D. Gebremedhin, and D.R. Harder et al. (1996). 20-HETE is an endogenous inhibitor of the large-conductance Ca+2-activated K+ channel in renal arterioles. Am. J. Physiol. 270, R228–R237.

    PubMed  CAS  Google Scholar 

  132. Su, P., K.M. Kaushal, and D.L. Kroetz (1998). Inhibition of renal arachidonic acid omegahydroxylase activity with ABT reduces blood pressure in the SHR. Am. J. Physiol. 275, R426–R438.

    PubMed  CAS  Google Scholar 

  133. Wang, M.H., F. Zhang, J. Marji, B.A. Zand, A. Nasjletti, and M. Laniado-Schwartzman (2001). CYP4A1 antisense oligonucleotide reduces mesenteric vascular reactivity and blood pressure in SHR. Am. J. Physiol. 280, 255–261.

    Google Scholar 

  134. Ma, Y.H., M.L. Schwartzman, and R.J. Roman (1994). Altered renal P-450 metabolism of arachidonic acid in dahl salt-sensitive rats. Am. J. Physiol. 267, R579–R589.

    PubMed  CAS  Google Scholar 

  135. Zhou, A.P., H.A. Drummond, and R.J. Roman (1996). Role of 20-HETE in elevating loop chloride reabsorption in Dahl SS/Jr. rats. Hypertension 27, 631–635.

    Google Scholar 

  136. Makita, K., K. Takahashi, A. Karara, H.R. Jacobson, J.R. Falck, and J.H. Capdevila (1994). Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J. Clin. Invest. 94, 2414–2420.

    PubMed  CAS  Google Scholar 

  137. Nakagawa, K., J.S. Marji, M.L. Schwartzman, M.R. Waterman, and J.H. Capdevila (2003). The androgen-mediated induction of kidney arachidonate hydroxylases is associated with the development of hypertension. Am. J. Physiol. 284, R1055–R1062.

    CAS  Google Scholar 

  138. Kroetz, D.L., P. Yook, P. Costet, P. Bianchi, and T. Pineau (1998). Peroxisome proliferator-activated receptor α controls the hepatic CYP4A induction adaptative response to starvation and diabetes. J. Biol. Chem. 273, 31581–31589.

    PubMed  CAS  Google Scholar 

  139. Corton, J.C., L-Q. Fan, S. Brown, S.P. Anderson, C. Bocos, and R.C. Cattley et al. (1998). Down-regulation of cytochrome P450 2C family members and positive acute-phase response gene expression by peroxisomal proliferator chemicals. Mol. Pharmacol. 54, 463–473.

    PubMed  CAS  Google Scholar 

  140. Shatara, R.K., D.W. Quest, and T.W. Wilson (2000). Fenofibrate lowers blood pressure in two genetic models of hypertension. Can. J. Physiol. Pharmacol. 78, 367–371.

    PubMed  CAS  Google Scholar 

  141. Roman, R.J., Y.H. Ma, B. Frohlich, and B. Markham (1993). Clofibrate prevents the development of hypertension in Dahl salt-sensitive rats. Hypertension 21, 985–988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Capdevila, J.H., Holla, V.R., Falck, J.R. (2005). Cytochrome P450 and the Metabolism and Bioactivation of Arachidonic Acid and Eicosanoids. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics