Skip to main content

Tissue Engineered Heart Valves: The Next Challenge

  • Chapter
Cardiac Reconstructions with Allograft Tissues

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoen FJ, Levy RJ. Tissue Heart Valves: Current Challenges and Future Research Perspectives. J Biomed Mat Res 1999;47:439–465.

    CAS  Google Scholar 

  2. Mayer JE Jr. Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Seminars in Thoracic and Cardiovascular Surgery 1995;7:130–132.

    PubMed  Google Scholar 

  3. Yacoub M, Rasmi NRH, Sundt TM, Lund O et al. Fourteen-year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 1995;110:186–194.

    PubMed  CAS  Google Scholar 

  4. Harken DW, Curtis LE. Heart surgery: legend and a long look. American Journal of Cardiology 1967;9:393–400.

    Google Scholar 

  5. Gross L, Kugel MA. Topographic anatomy and histology of the valves in the human heart. Am J Pathol 1931;7:445–473.

    Google Scholar 

  6. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovascular Research 1997;36:78–85.

    Article  PubMed  CAS  Google Scholar 

  7. Shinoka T, Breuer CK, Tanel RE, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 1995;S513–S516.

    Google Scholar 

  8. Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer JE Jr. Creation of viable pulmonary artery autografts through tissue engineering. The Journal of Thoracic and Cardiovascular Surgery 1998;115:536–546.

    Article  PubMed  CAS  Google Scholar 

  9. Stock U, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Schoen FJ, Vacanti JP, Mayer JE. Tissue-Engineered valve conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 2000;119:732–740.

    PubMed  CAS  Google Scholar 

  10. Shum-Tim D, Stock U, Harkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran A, Landis W, Langer R, Vacanti JP, Mayer JE. Tissue Engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 1999;68:2298–2304.

    Article  PubMed  CAS  Google Scholar 

  11. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Backa EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE. Functional Living Trileaflet Heart Valves Grown In Vitro. Circulation 2000;102(suppl):III-44–III-49.

    CAS  Google Scholar 

  12. Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE. New Pulsatile Bioreactor for In Vitro Formation of Tissue Engineered Heart Valves. Tissue Engineering 2000;6:75–79.

    Article  PubMed  CAS  Google Scholar 

  13. Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Langer R, Vacanti JP, Mayer JE Jr. Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation 1997;96:II-102–II-107.

    Google Scholar 

  14. Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Accellular Matrix: A biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 1995;60:S353–S358.

    Article  PubMed  CAS  Google Scholar 

  15. Elkins RC, Dawson PE, Goldstein S, Walsh SP, Black KS. Decellularized Human Valve Allografts. Ann Thorac Surg 2001;71:S428–S432.

    Article  PubMed  CAS  Google Scholar 

  16. O’Brien M, Goldstein S, Walsh S, et al. The SynerGraft recellularization: first studies before clinical implantation. Seminars in Thoracic and Cardiovascular Surgery 1999;13:87–92.

    Google Scholar 

  17. Elkins RC, Goldstein S, Hewitt CW, Walsh SP, Dawson PE, Ollerenshaw JD, Black KS, Clarke DR, O’Brien MF. Recellularization of heart valve grafts by a process of adaptive remodeling. Sem in Thor and Card Surg 2001;13:87–92.

    CAS  Google Scholar 

  18. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 2000;102:III-50–III-55.

    CAS  Google Scholar 

  19. Booth C, Korossis SA, Wilcox HE, Watterson K, Kearney JN, Fisher J, Ingham E. Tissue engineering of cardiac valve prostheses I: Development and histological characterization of an acellular porcine scaffold. The Journal of Heart Valve Disease 2002;11:457–462.

    PubMed  Google Scholar 

  20. Korossis SA, Booth C, Wilcox HE, Watterson K, Kearney JN, Fisher J, Ingham E. Tissue engineering of cardiac valve prostheses II: bio-mechanical characterization of decellularized porcine aortic heart valves. The Journal of Heart Valve Disease 2002;11:463–471.

    PubMed  Google Scholar 

  21. Jockenhoevel S, Zund G, Hoerstrup SP, et al. Fibrin gel-advantages of a new scaffold in cardivascular tissue engineering. European Journal of Cardio-Thoracic Surgery 2001;19:424–430.

    Article  PubMed  CAS  Google Scholar 

  22. Sakai T, Li RK, Weisel RD, Mickle DAG, Kim ET, Jia ZQ, Yau TM. The fate of tissueengineered cardiac graft in the right ventricular outflow tract of the rat. J Thorac Cardiovasc Surg 2001;121:932–942.

    Article  PubMed  CAS  Google Scholar 

  23. Shi Y, Ramanurthi A, Vesley I. Towards tissue engineering of a composite aortic valve. Biomedical Sciences Instrumentation 2002;38:35–40.

    PubMed  CAS  Google Scholar 

  24. Hilbert SL, Luna RE, Zhang J, Wang Y, Hopkins RA, Yu ZX, Ferrans VJ. Allograft heart valves: the role of apoptosis-mediated cell loss. J Thorac Cardiovasc Surg 1999;117:454–462.

    PubMed  CAS  Google Scholar 

  25. Mitchell RN, Jonas RA, Schoen FJ. Pathology of explanted cryopreserved allograft heart valves: comparison with aortic valves from orthotopic heart transplants. J Thorac Cardiovasc Surg 1998;115:118–127.

    PubMed  CAS  Google Scholar 

  26. Hopkins RA, Reyes A, Imperato DA, et al. Ventricular outflow tract reconstructions with cryopreserved cardiac valve homografts: a single surgeon’s 10 year experience. Ann Surg 1996;223:544–553.

    Article  PubMed  CAS  Google Scholar 

  27. Clarke D, Campbell D, Hayward A, et al. Degeneration of aortic valve allografts in young recipients. J Thorac Cardiovasc Surg 1993;105:934–942.

    PubMed  CAS  Google Scholar 

  28. Maish MS, Hoffman-Kim D, Krueger PM, Souza JM, Harper JJ, Hopkins RA. Tricuspid Valve Biopsy—A potential source of cardiac myofi-broblast cells for tissue engineered cardiac valves. J Heart Valve Dis 2002; In press.

    Google Scholar 

  29. Hayward IP, Bridle KR, Campbell GR, et al. Effect of extracellular matrix proteins on vascular smooth muscle cell phenotype. Cell Biology International 1995;19:727–734.

    PubMed  CAS  Google Scholar 

  30. Sutherland FWH, Perry TE, Masuda Y, Sherwood MC, Mayer JE Jr. Stem cell engineered heart valves: short term follow-up. Engineered Tissues 2003;26.

    Google Scholar 

  31. Weston MW, Yoganathan A. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Annals of Biomedical Engineering 2001;29:752–763.

    PubMed  CAS  Google Scholar 

  32. Vouyouka AG, Powell RJ, Ricotta J, et al. Ambient pulsatile pressure modulates endothelial cell proliferation. Journal of Molecular and Cellular Cardiology 1998;30:609–615.

    Article  PubMed  CAS  Google Scholar 

  33. Predel HG, Yang Z, von Segesser, et al. Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet 1992;340:878–879.

    PubMed  CAS  Google Scholar 

  34. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. The Journal of Cell Biology 1993;120:577–585.

    Article  PubMed  CAS  Google Scholar 

  35. Salwen SA, Szarowski DH, Turner JN, et al. Three-dimensional changes of the cytoskeleton of vascular endothelial cells exposed to sustained hydrostatic pressure. Medical and Biological Engineering and Computing 1998;36:520–527.

    CAS  Google Scholar 

  36. Hayward IP, Bridle KR, Campbell GR, et al. Effect of extracellular matrix proteins on vascular smooth muscle cell phenotype. Cell Biology International 1995;19:727–734.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hilbert, S.L., Hopkins, R.A. (2005). Tissue Engineered Heart Valves: The Next Challenge. In: Cardiac Reconstructions with Allograft Tissues. Springer, New York, NY. https://doi.org/10.1007/0-387-26515-5_65

Download citation

  • DOI: https://doi.org/10.1007/0-387-26515-5_65

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94962-8

  • Online ISBN: 978-0-387-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics