Skip to main content

Making Strong Ion Difference the "Euro" for Bedside Acid-Base Analysis

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2005

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kellum JA (2000) Determinants of blood pH in Health and Disease. Crit Care 4:6–14

    Article  PubMed  Google Scholar 

  2. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1997) Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care 12:7–12

    Article  PubMed  Google Scholar 

  3. Schlichtig R, Grogono AW, Severinghaus JW (1998) Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 26:173–1179

    Google Scholar 

  4. Corey HE (2003) Stewart and beyond: New models of acid-base balance. Kidney Int 64:777–787

    Article  PubMed  Google Scholar 

  5. Wooten EW (2003) Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol 95:2333–2444

    PubMed  Google Scholar 

  6. Stewart P (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  Google Scholar 

  7. Stewart PA (1981) How To Understand Acid-Base: A Quantitative Acid-Base Primer for Biology And Medicine, 1 edn. Elsevier, New York

    Google Scholar 

  8. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713–719

    PubMed  Google Scholar 

  9. Singer RB, Hastings AB (1948) An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 27:223–242

    Google Scholar 

  10. European Society of Intensive Care Medicine (ESICM) PACT (Patient-centred Acute Care Training). http://www.esicm.org/PAGE_pactprogramme

    Google Scholar 

  11. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1998) Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 9:364–368

    PubMed  Google Scholar 

  12. Fernandez PC, Cohen RM, Feldman GM (1989) The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int 36:747–752

    PubMed  Google Scholar 

  13. Garella S, Dana CL, Chazan JA (1973) Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med 289:121–126

    PubMed  Google Scholar 

  14. Adrogue HJ, Brensilver J, Cohen JJ, Madias NE (1983) Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 71:867–883

    PubMed  Google Scholar 

  15. Astrup P, Jorgensen K, Siggaard-Andersen O (1960) Acid-base metabolism: New approach. Lancet 1:1035–1039

    Article  PubMed  Google Scholar 

  16. Siggaard-Andersen O (1962) The pH-log PCO2 blood acid-base nomogram revised. Scand J Clin Lab Invest 14:598–604

    PubMed  Google Scholar 

  17. Grogono AW, Byles PH, Hawke W (1976) An in vivo representation of acid-base balance. Lancet 1:499–500

    Article  Google Scholar 

  18. Severinghaus JW (1976) Acid-base balance nomogram-A Boston-Copenhagen détente. Anesthesiology45:539–541

    PubMed  Google Scholar 

  19. Brackett NC, Cohen JJ, Schwartz WB (1965) Carbon dioxide titration curve of normal man. N Engl J Med 272:6–12

    PubMed  Google Scholar 

  20. Prys-Roberts C, Kelman GR, Nunn JF (1966) Determinants of the in vivo carbon dioxide titration curve in anesthetized man. Br J Anaesth 38:500–550

    PubMed  Google Scholar 

  21. Schlichtig R (1999) Acid-base balance (quantitation). In: Grenvik A, Shoemaker WC, Ayres SM, Holbrook PR (eds) Textbook of Critical Care. W.B. Saunders Co, Philadelphia, PA, pp 828–839

    Google Scholar 

  22. Leblanc M, Kellum JA (1998) Biochemical and biophysical principles of hydrogen ion regulation. In: Ronco C, Bellomo R (eds) Critical Care Nephrology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 261–277

    Google Scholar 

  23. Jones NL (1990) A quantitative physciochemical approach to acid-base physiology. Clin Biochem 23:189–195

    Article  PubMed  Google Scholar 

  24. Sirker AA, Rhodes A, Grounds RM, Bennett ED (2002) Acid-base physiology: the ‘traditional’ and the ‘modern’ approaches. Anaesthesia 57:348–356

    Article  PubMed  Google Scholar 

  25. Narins RG, Emmett M (1980) Simple and mixed acid-base disorders: A practical approach. Medicine (Baltimore) 59:161–187

    PubMed  Google Scholar 

  26. Sadjadi SA (1995) A new range for the anion gap. Ann Intern Med 123:807–808

    Google Scholar 

  27. Winter SD, Pearson R, Gabow PG, Schultz A, Lepoff RB (1990) The fall of the serum anion gap. Arch Intern Med 150:3113–3115

    Article  Google Scholar 

  28. Salem MM, Mujais SK (1992) Gaps in the anion gap. Arch Intern Med 152:3625–1629

    Article  Google Scholar 

  29. Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8:187–197

    Article  PubMed  Google Scholar 

  30. Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10:51–55

    Article  PubMed  Google Scholar 

  31. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1995) Hepatic anion flux during acute endotoxemia. J Appl Physiol 78:2212–2217

    PubMed  Google Scholar 

  32. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41–R45

    Article  PubMed  Google Scholar 

  33. Balasubramanyan N, Havens PL, Hoffman GM (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27:1577–1581

    Article  PubMed  Google Scholar 

  34. Cusack RJ, Rhodes A, Lochhead P, et al (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28:864–869

    PubMed  Google Scholar 

  35. Rocktaschel J, Morimatsu H, Uchino S, Bellomo R (2003) Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 31:2131–2136

    Article  PubMed  Google Scholar 

  36. Kaplan L, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–1124

    Article  PubMed  Google Scholar 

  37. Dondorp AM, Chau TT, Phu NH, et al (2004) Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med 32:1683–1688

    Article  PubMed  Google Scholar 

  38. Kellum JA (2003) Closing the gap on unmeasured anions. Crit Care 7:219–220

    Article  PubMed  Google Scholar 

  39. Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B (1999) The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med 25:680–685

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kellum, J. (2005). Making Strong Ion Difference the "Euro" for Bedside Acid-Base Analysis. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_56

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_56

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics