Skip to main content

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connors AF Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Google Scholar 

  2. Sandham JD, Hull RD, Brant RF, et al (2003) A randomized, controlled trial of the use of pulmonary artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  3. Richard C, Warszawski J, Anguel N, et al (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome. JAMA 290:2713–2720

    Article  PubMed  Google Scholar 

  4. Lefrant JY, Muller L, Bruelle P, et al (2000) Insertion time of the pulmonary artery catheter in critically ill patients. Crit Care Med 28:355–359

    Article  PubMed  Google Scholar 

  5. Polanczyk CA, Rohde LE, Goldman L, et al (2001) Right heart catheterization and cardiac complications in patient undergoing noncardiac surgery: an observational study. JAMA 286:309–314

    Article  PubMed  Google Scholar 

  6. Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12:107–112

    PubMed  Google Scholar 

  7. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21:218–223

    PubMed  Google Scholar 

  8. Michard F, Ruscio L, Teboul JL (2001) Clinical prediction of fluid responsiveness in acute circulatory failure related to sepsis. Intensive Care Med 27:1238

    Article  PubMed  Google Scholar 

  9. Smith GCS, Pell JP (2003) Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomized controlled trials. BMJ 327:1459–1461

    PubMed  Google Scholar 

  10. Polderman KH, Girbes AR (2002) Central venous catheter use. Part 2: infectious complications. Intensive Care Med 28:18–28

    Article  PubMed  Google Scholar 

  11. Gurman GM, Kriemerman S (1985) Cannulation of big arteries in critically ill patients. Crit Care Med 13:217–220

    PubMed  Google Scholar 

  12. Scheer BV, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6:199–204

    PubMed  Google Scholar 

  13. Schiller NB (2003) Ejection fraction by echocardiography: the full monty or just a peep show? Am Heart J 146:380–382

    Article  PubMed  Google Scholar 

  14. Weiss JL, Eaton LW, Kallman CH, Maughan WL (1983) Accuracy of volume determination by two-dimensional echocardiography: defining requirements under controlled conditions in the ejection canine left ventricle. Circulation 67:889–895

    PubMed  Google Scholar 

  15. Godje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113:1070–1077

    PubMed  Google Scholar 

  16. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  17. Brown JM (2002) Use of echocardiography for hemodynamic monitoring. Crit Care Med 30:1361–1364

    Article  PubMed  Google Scholar 

  18. Axler O, Tousignant C, Thompson CR, et al (1996) Comparison of transesophageal echocardiographic, fick, and thermodilution cardiac output in critically ill patients. J Crit Care 11:109–116

    Article  PubMed  Google Scholar 

  19. Axler O, Megarbane B, Lentschener C, et al (2003) Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation. Intensive Care Med 29:208–217

    PubMed  Google Scholar 

  20. Stoddard MF, Prince CR, Ammash N, et al (1993) Pulsed Doppler transesophageal echocardiographic determination of cardiac output in human beings: comparison with thermodilution technique. Am Heart J 126:956–962

    Article  PubMed  Google Scholar 

  21. Feinberg MS, Hopkins WE, Davila-Roman VG, Barzilai B (1995) Multiplane transesophageal echocardiographic Doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest 107:769–773

    PubMed  Google Scholar 

  22. Descorps-Declere A, Smail N, Vigue B, et al (1996) Transgastric, pulsed Doppler echocardiographic determination of cardiac output. Intensive Care Med 22:34–38

    PubMed  Google Scholar 

  23. Ormiston JA, Shah PM, Tei C, et al (1981) Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120

    PubMed  Google Scholar 

  24. Stewart WJ, Jiang L, Mich R, Pandian N, Guerrero JL, Weyman AE (1985) Variable effects of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations. J Am Coll Cardiol 6:653–662

    PubMed  Google Scholar 

  25. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846

    Article  PubMed  Google Scholar 

  26. Goedje O, Hoeke K, Lichtwarck-Aschoff M, et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412

    Article  PubMed  Google Scholar 

  27. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118:775–781

    Article  PubMed  Google Scholar 

  28. McLuckie A, Marsh M, Murdoch I, et al (1996) A comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr 85:336–338

    PubMed  Google Scholar 

  29. Tibby SM, Hatherill M, Marsh MJ, et al (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23:987–991

    PubMed  Google Scholar 

  30. Sakka SG, Reinhart K, Wegscheider K, et al (2000) Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output. J Cardiothorac Vasc Anesth 14:119–124

    Article  PubMed  Google Scholar 

  31. Pauli C, Fakler U, Genz T, et al (2002) Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med 28:947–952

    Article  PubMed  Google Scholar 

  32. Jardin F (1997) PEEP, tricuspid regurgitation, and cardiac output. Intensive Care Med 23:806–807

    Article  PubMed  Google Scholar 

  33. Buffington CW, Nystrom EUM (2004) Neither the accuracy nor the precision of thermal dilution cardiac output measurements is altered by acute tricuspid regurgitation in pigs. Anesth Analg 98:884–890

    Article  PubMed  Google Scholar 

  34. Thys DM, Hillel Z, Goldman ME, Mindich BP, Kaplan JA (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67:630–634

    PubMed  Google Scholar 

  35. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    Article  PubMed  Google Scholar 

  36. Clements FM, Harpole DH, Quill T, Jones RH, McCann RL (1990) Estimation of left ventricular volume and ejection fraction by two-dimensional transoesophageal echocardiography: comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth 64:331–336

    PubMed  Google Scholar 

  37. Urbanowicz JH, Shaaban MJ, Cohen NH, et al (1990) Comparison of transesophageal echocardiographic and scintigraphic estimates of left ventricular end-diastolic volume index and ejection fraction in patients following coronary artery bypass grafting. Anesthesiology 72:607–612

    PubMed  Google Scholar 

  38. Cheung AT, Savino JS, Weiss SJ, et al (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81:376–387

    PubMed  Google Scholar 

  39. Axler O, Tousignant C, Thompson CR, et al (1997) Small hemodynamic effect of typical rapid volume infusions in critically ill patients. Crit Care Med 25:965–970

    Article  PubMed  Google Scholar 

  40. Meier F, Zierler KL (1954) On the theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  Google Scholar 

  41. Newman EV, Merrel M, Genecin A, et al (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4:735–746

    PubMed  Google Scholar 

  42. Sakka SG, Rühl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  Google Scholar 

  43. Wiesenack C, Prasser C, Keyl C, et al (2000) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15:584–588

    Google Scholar 

  44. Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195

    Article  PubMed  Google Scholar 

  45. Sakka SG, Meier-Hellmann A (2001) Extremely high values of intrathoracic blood volume in critically ill patients. Intensive Care Med 27:1677–1678

    Article  PubMed  Google Scholar 

  46. Michard F (2004) Do we need to know cardiac preload? In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 694–701

    Google Scholar 

  47. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  48. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  Google Scholar 

  49. Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96:337–342

    Article  PubMed  Google Scholar 

  50. Vieillard-Baron A, Chergui K, Rahiller A, et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  51. Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939

    PubMed  Google Scholar 

  52. Goedje O, Hoeke K, Goetz AE, et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  53. Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    Article  PubMed  Google Scholar 

  54. Reuter DA, Kirchner A, Felbinger TW, Schmidt C, Lamm P, Goetz AE (2002) Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anesth 88:124–126

    Article  Google Scholar 

  55. Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  56. Reuter DA, Kirchner A, Felbinger TW, et al (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–1404

    Article  PubMed  Google Scholar 

  57. Marx G, Cope T, McCrossan L, et al (2004) Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesth 21:132–138

    Article  Google Scholar 

  58. Michard F, Schmidt U (2004) Prediction of fluid responsiveness: searching for the Holy Grail. J Appl Physiol 97:790–791

    Article  PubMed  Google Scholar 

  59. Feissel M, Michard F, Mangin I, et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    Article  PubMed  Google Scholar 

  60. Feissel M, Michard F, Faller JP, et al (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  61. Nitenberg A (2004) Evaluation of left ventricular performance: an insolvable problem in human beings? The Graal quest. Intensive Care Med 30:1258–1260

    Article  PubMed  Google Scholar 

  62. Robotham JL, Takata M, Berman M, et al (1993) Ejection fraction revisited. Anesthesiology 74:172–183

    Google Scholar 

  63. Combes A, Berneau JB, Luyt CE, et al (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383

    PubMed  Google Scholar 

  64. Konstadt SN, Louie EK, Black S, et al (1991) Intraoperative detection of patent foramen ovale by transesophageal echocardiography. Anesthesiology 74:212–216

    PubMed  Google Scholar 

  65. Swan HJC, Zapata-Diaz J, Wood EH (1953) Dye dilution curves in cyanotic congenital heart disease. Circulation 8:70–81

    PubMed  Google Scholar 

  66. Krovetz LJ (1974) Detection and quantification of intracardiac and great vessel shunts. In: Bloomfield DA (ed) Dye Curves: The Theory and Practice of Indicator Dilution. University Park Press, Baltimore, pp 119–143

    Google Scholar 

  67. Michard F, Alaya S, Medkour F (2004) Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med 32:308–309

    Article  PubMed  Google Scholar 

  68. Miller G (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    PubMed  Google Scholar 

  69. Katzenelson R, Perel A, Berkenstadt H, et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554

    Article  PubMed  Google Scholar 

  70. Mitchell JP, Schuller D, Calandrino FS, et al (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michard, F. (2005). Echo and PiCCO: Friends or Foe?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_48

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_48

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics