Skip to main content

New Options for Pharmacological Management of Cardiac Resuscitation

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2005

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

  • 619 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association (2000) Guidelines 2000 for Cardiopulmonary resuscitation and emergency cardiovascular care, Circulation 102:I-1–I-380

    Google Scholar 

  2. American Heart Association (1992) Heart and Stroke Facts. AHA, Dallas

    Google Scholar 

  3. Weil MH, Secker L, Budinger T, et al (2001) Workshop Executive Summary report: post-resuscitative and initial utility in life saving efforts (PULSE). Circulation 303:1182–1184

    Google Scholar 

  4. Brain Resuscitation Clinical Trial II Study Group (1991) A randomized clinical study of a calciumentry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 324:1125–1231

    Google Scholar 

  5. Brown CG, Martin DR, Pepe PE (1992) A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital, N Engl J Med 327:1051–1055

    PubMed  Google Scholar 

  6. Stiell IG, Herbert PC, Weitzman BN (1992) High-dose epinephrine in adult cardiac arrest. N Engl J Med 327:1045–1050

    PubMed  Google Scholar 

  7. Lombardi G, Gallagher J, Gennis P (1994) Outcome of out-of-hospial cardiac arrest in New York City: the Pre-hospital Arrest Survival Evaluation (PHASE) study. JAMA 271:678–683

    Article  PubMed  Google Scholar 

  8. Tang W, Weil MH, Sun SJ, Gazmuri RJ, Bisera J, Rackow EC (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050

    PubMed  Google Scholar 

  9. Gazmuri RJ, Weil MH, Bisera J, Tang W, Fukui M, McKee D (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  PubMed  Google Scholar 

  10. Brain Resuscitation Clinical Trial I Study Group (1986) A randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Eng J Med 314:397–403

    Google Scholar 

  11. Depre C, Taegtmeyer H (2000) Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 45:538–548.

    Article  PubMed  Google Scholar 

  12. Katz AM, Reuter H (1979) Cellular calcium and myocardial cell death. Am J Cardiol 44:188–190

    Article  PubMed  Google Scholar 

  13. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21:901–906

    PubMed  Google Scholar 

  14. Weil MH, Tang W (1997) Cardiopulmonary resuscitation: A promise as yet largely unful-filled. Disease-A-Month 43:429–504

    Article  PubMed  Google Scholar 

  15. Tang W, Weil MH, Sun SJ, Pernat A, Mason E (2000) Ischemic preconditioning improves post resuscitation myocardial dysfunction: the role of KATP channel activation. Am J Physiol 279:H1609–H1615

    Google Scholar 

  16. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Google Scholar 

  17. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    PubMed  Google Scholar 

  18. Ditchey RV, Lindenfeld JA (1988) Failure of epinephrine to improve the balance between oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 78:382–389

    PubMed  Google Scholar 

  19. Tang W, Weil MH, Gazmuri RJ, Sun S, Duggal C, Bisera J (1991) Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation 84:2101–2107

    PubMed  Google Scholar 

  20. Prengel AW, Lindner KH, Keller A, Lurie KG (1996) Cardiovascular function during the post-resuscitation phase after cardiac arrest in pigs: A comparison of epinephrine versus vasopressin. Crit Care Med 24:2014–2019

    Article  PubMed  Google Scholar 

  21. Wenzel V, Krismer AC, Arntz HR, Sitter H, Stadlbauer KH, Lindner KH (2004) A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med 350:105–133

    Article  PubMed  Google Scholar 

  22. Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific function of a2-adrenergic receptors. J Pharmacol Exper Ther 293(1):1

    Google Scholar 

  23. Gavras I, Gavras H (2001) Role of alpha2-adrenergic receptors in hypertension. Am J Hypertens 14:171S–177S

    Article  PubMed  Google Scholar 

  24. Sun S, Weil MH, Tang W, Kamohara T, Klouche K (2001) Alpha-methylnorepinephrine, a selective alpha2-adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol 37:951–956

    PubMed  Google Scholar 

  25. Ishibashi Y, Duncker DJ, Bache RJ (1997) Endogenous nitric oxide masks alpha2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 80:196

    PubMed  Google Scholar 

  26. Klouche K, Weil MH, Tang W, Povoas H, Kamohara T, Bisera J (2002) A selective a-adrenergic agonist for cardiac resuscitation. J Lab Clin Med 140:27–34

    Article  PubMed  Google Scholar 

  27. Bruce DS, Bailey EC, Crane SK, Oeltgen PR, Horton ND, Harlow HJ (1997) Hibernation-induction trigger. I. Opioid-like effects of prairie dog plasma albumin on induced contractility of guinea pig ileum. Pharmacol Biochem Behav 58:621–625

    Article  PubMed  Google Scholar 

  28. Bourhim N, Elkebbaj MS, Ouafik L, Chautard TH, Giraud P, Oliver C (1993) Opioid binding sites in jerboa (Jaculus orientalis) brain: a biochemical comparative study in the awake-active and induced hibernating states. Comparative Biochem Physiol — B: Comparative Biochem 104:607–615

    Article  Google Scholar 

  29. Wang LCH (1997) Energetic and field aspects of mammalian torpor in the Richardson's ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in Cold: Natural Torpidity and Thermogenesis. Academic Press, New York, pp 109–145

    Google Scholar 

  30. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 sub-type. J Pharmacol Exp Ther 251:461–468

    PubMed  Google Scholar 

  31. Benedict PE, Benedict MB, Su TP, Bolling SF (1999) Opiate drugs and delta-receptor-mediated myocardial protection. Circulation 100:357–360

    Google Scholar 

  32. Sigg DC, Coles JA, Jr., Oeltgen PR, Iaizzo PA (2002) Role of delta-opioid receptor agonists on infarct size reduction in swine. Am J Physiol Heart Circ Physiol 282:H1953–H1960

    PubMed  Google Scholar 

  33. Keller AM, Cannon PJ, Wolny AC (1991) Effect of graded reductions of coronary pressure and flow on myocardial metabolism and performance: a model of “hibernating” myocardium. J Am Coll Cardiol 17:1661–1670

    PubMed  Google Scholar 

  34. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988) Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78:729–735

    PubMed  Google Scholar 

  35. Arai AE, Pantely GA, Anselone CG, Bristow, Bristow JD (1991) Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 69:1458–1469

    PubMed  Google Scholar 

  36. Chen CL, Ma L, Dyckman W, et al (1997) Left ventricular remodeling in myocardial hibernation. Circulation 96(Suppl II): II46–II50

    Google Scholar 

  37. Heusch G (1998) Hibernation myocardium. Physiol Rev 78:1055–1085

    PubMed  Google Scholar 

  38. Fryer RM, Wang Y, Hsu AK, Gross G (2001) Essential activation of PKC-d in opioid-initiated cardioprotection. Am J Physiol 280:H1346–H1353

    Google Scholar 

  39. Kato R, Foex P (2000) Fentanyl reduces infarction but not stunning via d-opioid receptors and protein kinase C in rats. Br J Anaesth 84:608–614

    PubMed  Google Scholar 

  40. Bolling SF, Badhwar V, Schwartz CF, Oeltgen PR, Kilgore K, Su TP (2001) Opioids confer myocardial tolerance to ischemia: Interaction of delta opioid agonists and antagonists. J Thorac Cardiovasc Surg 122:476–481

    Article  PubMed  Google Scholar 

  41. Kern KB, Hilwig RW, Berg RA, et al (1997) Postresuscitation left ventricular systolic and diastolic dysfuction. Treatment with dobutamine. Circulation 95:2611–2613

    Google Scholar 

  42. Tennyson H, Kern KB, Hilwig RW, Berg RA, Ewy GA (2002) Treatment of post resuscitation myocardial dysfunction: aortic counterpulsation versus dobutamine. Resuscitation 54:69–75

    Article  PubMed  Google Scholar 

  43. Kopustinskiene DM, Pollesello P, Saris NEL (2001) Levosimendan is a mitochondrial KATP channel opener. Eur J Pharmacol 428:311–314

    Article  PubMed  Google Scholar 

  44. Haikala H, Levijoki J, Linden I-B (1995) Troponin C-mediated calcium sensitization by levo-simendan accelerates the proportional development of isometric tension. T Mol Cell Cardiol 27:2155–2165

    Article  Google Scholar 

  45. Hasenfuss G, Pieske B, Castell M, Kreschman B, Maier L, Hanjörg J (1998) Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium Circulation 98:2142–2147

    Google Scholar 

  46. Todaka K, Wang J, Yi GH, et al (1996) Effects of levosimendan on myocardial contractility and oxygen consumption. J Pharmacol Exp Ther 279:120–127

    PubMed  Google Scholar 

  47. Haikala H, Kaheinen P, Levijoki J, Linden I-B (1997) The role of cAMP-and cGMP-dependent protein kinases in the cardiac actions of the new calcium sensitizer, levosimendan. Cardiovasc Res 34:536–546

    Google Scholar 

  48. Jamali IN, Kersten JR, Pagel PS, Hettrick DA, Warltier DC (1997) Intracoronary levosimendan enhances contractile function of stunned myocardium. Anesth Analg 85:23–29

    Article  PubMed  Google Scholar 

  49. Kersten JR, Montgomery MW, Pagel PS, Warltier DC (2000) Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of KATP channels. Anesth Analg 90:5–11

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weil, M., Tang, W., Sun, S. (2005). New Options for Pharmacological Management of Cardiac Resuscitation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_23

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics