Skip to main content

Pentylenetetrazol-Induced Kindling as a Model of Absence and Convulsive forms of Epilepsy

  • Conference paper
Kindling 6

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

Abstract

The electrically and chemically induced kindling is a model of human epilepsy. Whereas the electrical kindling is regarded as a model of complex partial epilepsy,1,2,3 the chemical kindling6,7 is a model of primary generalized epilepsy.5 Although pentylenetetrazol (PTZ) kindling has often been used to explore the mechanisms of seizure genesis and neurobehavioral and neurophysiological consequences of seizures, limited attention was paid to the contribution of this model in the mechanisms of the generalized nonconvulsive epilepsy-absence model.817 Meanwhile, complex evaluation of this model should be performed as far as divergent and even opposite mechanisms of epileptogenesis might be suspected in the course of generalized absence and convulsive stages of PTZ-kindling. Thus, first one is characterized by absence-like manifestations (spike-wave discharges (SWD)-bursts) and is supported by hyperexcitable state of all cortical neurons, including inhibitory ones, while receptors of GABA are preserved and their hyperactivation is resulted in typical generalized spike-wave generation.1819 Further increasing of epileptogenic stimuli is followed by collapse of GABA control, and precipitation of generalized seizures as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. J.O. McNamara, Kindling: an animal model of complex partial epilepsy Ann Neurol., 16,(suppl.), 72–76 (1984).

    Article  Google Scholar 

  2. Wada J.A., in: The Continuing Evolution of the Limbic System Concept, edited by K.E. Livingston, and H. Hornykiewicz (Plenum Press, New York, 1978), pp. 369–388.

    Google Scholar 

  3. M. Sato, R.J. Racine, and D.C. McIntyre, Kindling: basic mechanisms and clinical validity, EEG Clin. Neurophysiol., 76, 459–472 (1990).

    Article  CAS  Google Scholar 

  4. J. Ono, R.F. Vieth, and P.D. Walson, Electrocorticographical observation of seizures induced by pentylenetetrazol (PTZ) injections in rats, Funct. Neurol., 5, 345–352 (1990).

    PubMed  CAS  Google Scholar 

  5. R Rossi, Sensitization induced by kindling and kindling-induced phenomena as a model for multiple chemical sensitivity, Toxicol, 111, 87–100 (1996)

    Article  CAS  Google Scholar 

  6. C G. Wasterlain, and V. Jonec, Chemical kindling by muscarinergic amygdaloid stimulation in the rat, Brain Res., 271, 311–323 (1983)

    Article  PubMed  CAS  Google Scholar 

  7. C. G. Wasterlain, A.M. Morin, D.G. Fujikawa, and J.M. Bronstein, in: The Clinical Relevance of Kindling, edited by T G. Bolwig, and M.R Trimble (John Wiley, New York, 1989), pp.35–53.

    Google Scholar 

  8. A.A. Shandra, L.S. Godlevsky, and N.D. Semenyuk, Generalized seizure activity formation in mice after corazol subthrrehol doses daily administration, Bull. Exp. Biol., 195(4), 527–532 (1983), in Russian.

    Google Scholar 

  9. C.R. Mason, and R.M. Cooper, A permanent change in convulsive threshold in normal and brain damaged rats, with repeated small doses of pentylenetetrazol, Epilepsia, 13, 663–674 (1972).

    Article  PubMed  CAS  Google Scholar 

  10. J P.J. Pinel, and K.F. Cheung, Brief communication. Controlled demonstration of metrazol kindling, Pharmacol. Biochem. Behav., 6, 599–600 (1977)

    Article  PubMed  CAS  Google Scholar 

  11. T. Ito, M. Hori, K Yoshida, and M. Shimuzu, Effect of anticonvulsants on seizure developing in the course of daily administration of pentetrazol to rats, Eur. J. Pharmacol. 45, 165–172 (1977)

    Article  PubMed  CAS  Google Scholar 

  12. W. Pohle, A. Becker, G. Grecksch, A. Juhre, and A Willenberg, Piracetam prevents pentylenetetrazol-induced neuronal loss and learning deficits, Seizure, 6, 467–474 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. G. Grecksch, A. Becker, H. Schroeder, and V. Hollt, Involvement of delta-opioid receptors in pentylenetetrazol kindling development and kindling-related processes in rats, Naunyn-Schmiedeberg’s Arch.Pharmacol. 360, 151–156 (1999).

    Article  CAS  Google Scholar 

  14. V. Erakovic, G. Zupan, J. Varljen, J. Laginja, and A. Simonic, Altered activities of rat brain metabolic enzymes caused by pentylenetetrazol kindling and pentylenetetrazol-induced seizure, Epilepsy. Res. 43, 165–173 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. V. Erakovic, G Zupan, J. Varljen, and A. Simonic, Pentylenetetrazol-induced seizures and kindling: changes in fre fatty acids, superoxide dismutase, and glutathione peroxidase activity, Neurochem.Internat. 42, 173–178 (2003).

    Article  CAS  Google Scholar 

  16. Y. Hayashi, Y. Monzumi, Y. Hattori, and J. Tanaka, Pentylenetetrazol-induced kindling stimulates the polyamine interconversion pathway in rat brain, Brain Res. 828, 184–188 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. A. Becker, G. Grecksch, and H. Schroeder, Low doses of AMPA exert anticonvulsant effects on pentylenetetrazol — kindled seizures, Pharmacol., Biochem. Behav. 70, 421–426 (2001).

    Article  CAS  Google Scholar 

  18. P. Gloor, Generalized epilepsy with spike and wave discharges: reinterpretation of its electrographic and clinical manifestations, Epilepsia, 20, 571–588 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. GK Kostopoulos, Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis, Clin Neurophys., 111, S27–S38 (2000).

    Article  Google Scholar 

  20. R.J. Racine, M. Steingart, and D.C. McIntyre, Development of kindling-prone and kindling-resistant rats:selective breeding and electrophysiological studies, Epilepsy Res. 35, 183–195 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. A.M.L. Coenen, W.H.I.M. Drinkenburg, M Inoue, and E L.J.M. van Luijtelaar, Genetic models of absence epilepsy, with emphasis on the WAG/rij strain of rats, Epilepsy Res., 12, 75–86 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. L Danober, C. Deransart, A Depaulis, M Vergnes, and C. Marescaux, Pathophysiological mechanisms of genetic absence epilepsy in the rat, Progr. Neurobiol., 55, 27–57 (1998)

    Article  CAS  Google Scholar 

  23. A A. Shandra, A M Mazarati, L.S Godlevsky, and R.S. Vastyanov, Chemical kindling. implications for antiepileptic drug-sensitive and resistant epilepsy models, Epilepsia, 37(3), 269–274 (1996)

    Article  PubMed  CAS  Google Scholar 

  24. W. Losher, Which animal models should be used in the search for new antiepileptic drugs, Epilepsia, 34(suppl.2), 188 (1993).

    Google Scholar 

  25. H.K.M. Meeren, E.L.J.M. van Luijtelaar, F.H. Lopes de Silva, R.K. Berdiev, N.E. Chepumova, S.A. Chepurnov, and A.M.L. Coenen, The cotico-thalamic theory for generalized spike-wave discharges, Uspehi Fiziologicheskih Nauk, 35,(1), 3–19 (2004). In Russian.

    CAS  Google Scholar 

  26. I.S. Midzianovskaia, G.D. Kuznetsova, A.M. Coenen, A.M. Spiridonov, and E.L.J.M. van Luijtelaar, Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats, Brain Res., 911, 62–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. R. Paetau, M. Peltola, E. Liukkonen, M. Granstrom, L. Valanne, G. Blomstedt, and A. Peatau, Continuous spike-wave during sleep: thalamocortical denervation? Epilepsia, 43,S8, 176 (2002).

    Google Scholar 

  28. G.N. Kryzhanovsky, A.A. Shandra, R.F. Makulkin, and L.S. Godlevsky, The hippocamp as a determinant stracture generating the epileptiform activity in corazol kindling, Bull. Exp. Biol., 5, 527–532 (1985), in Russian.

    Google Scholar 

  29. G.N. Kryzhanovsky, and A.A. Shandra, Corazol-induced changes in the convulsant readiness of mice, Pharmacol. Toxicol., 2, 16–19 (1984), in Russian.

    Google Scholar 

  30. G.N. Kryzhanovsky, Central nervous System Pathology: A New Approach (Consultant Bureau, Raven Press Publishing Company, New York, 1986).

    Google Scholar 

  31. S. L. Buldakova, A.A. Shandra, G.N. Kryzhanovsky, S A. Saakyan, and V.G. Skrebitsky, Characteristics of electrical activity of hippocampal slices in mice with corazol kindling, Bul.Exp.Biol., 3, 272–274 (1985), in Russian

    Google Scholar 

  32. J L Stringer, Pentylenetetrazol caused polysynaptic responses to appear in the dentate gyrus, Neurosci., 68, 407–413 (1995).

    Article  CAS  Google Scholar 

  33. E. Barkel, M.J. Grossman, and M.J. Gutnick, Long-term changes in neocortical activity after chemical kindling with systemic pentylenetetrazol: an in vivo study, J. Neurophysiol., 72, 72–83 (1994).

    Google Scholar 

  34. Y. Fatholahi, F. Motamedi, S. Semnanian, M. Zardoshti, Examination of persistent effects of repeated administration of pentylenetetrazol on hippocampalCA1: evidence from in vitro study on hippocampal slice, Brain Res., 758, 92–98 (1997).

    Article  Google Scholar 

  35. Y. Fathoiahi, F. Motamedi, S. Semnanian, and M. Zardoshti, Reapeted administration of pentylenetetrazol alters susceptibility of rat hoppocampus to primedburst stimulation. evidence from in vivo study on CA1 of hippocampal slice, Brain Res., 738, 138–141 (1996).

    Article  Google Scholar 

  36. L. Rocha, M. Briones, R.F. Ackermann, B. Anton, N.T. Maidment, C.Y. Evans, and J. Jr.Engel, Pentylenetetrazol-induced kindling: early involvement of excitatory and inhibitory systems, Epilepsy Res., 26, 105–113 (1996).

    Article  PubMed  Google Scholar 

  37. M.R. Palizvan, Y. Fathollahi, S. Semnanian, S. Hajezadeh, and J. Mirnajafizadh, Differential effects of pentylenetetrazol-kindling on long-term potentiation of population excitatory postsynaptic potentials and population spikes in the CA1 region of rat hippocampus, Brain Res., 898, 82–90 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. R.E. Adamec, Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation quenching? on long term potentiation of amygdala efferents and behavior following kindling, Brain Res. 839, 133–152 (1999)

    Article  PubMed  CAS  Google Scholar 

  39. R Adamec, and B Young Neuroplasticity in specific limbic system circuits may mediate specific kindling induced changes in animal affect-implications for understanding anxiety associated with epilepsy, Neurosci. Biobehav. Rev., 24, 705–723 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. E. Bertram, Functional anatomy of spontaneous seizures in rat model of limbic epilepsy, Epilepsia, 38 (1), 95–105 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. M. Wong, D.F. Wozniak, and K.A. Yamada, An animal model of generalized nonconvulsive status epilepticus: immediate characteristics and long-term effects. Exp. Neurol., 183(1), 87–99 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. R.Q. Hu, M.A. Cortez, H.Y. Man, Y.T. Wang, and O.C Snead, Alteration of GLUR2 expression in the rat brain following absence seizures induced by gamma-hydroxybutiric acid, Epilepsy Res., 44, 41–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. L.S. Godlevsky, E.L.J M. van Luijtelaar, A.A Shandra, and A.M.L. Coenen, Cause and effect relations in disease; lessons from epileptic syndromes in animals, Medical Hypotheses, 58, 237–243 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Shandra, A.A., Godlevsky, L.S. (2005). Pentylenetetrazol-Induced Kindling as a Model of Absence and Convulsive forms of Epilepsy. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_6

Download citation

Publish with us

Policies and ethics