Skip to main content

Conditional Deletion of TrkB Prevents Epileptogenesis in the Kindling Model

  • Conference paper
Kindling 6

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

  • 581 Accesses

Abstract

Epilepsy is a common and frequently devastating neurological disorder, affecting approximately 1% of the population. Among the diverse forms, limbic epilepsy (synonyms include complex partial epilepsy, temporal lobe epilepsy, psychomotor epilepsy) in particular is the most devastating in adults for three reasons: (1) it is common, accounting for approximately 40% of all cases of adult epilepsy; (2) limbic seizures are often quite resistant to available anticonvulsant drugs;1 and (3) the attacks induce impairment of consciousness, thereby limiting driving, maintaining employment, etc. Therapy is only symptomatic in that available drugs inhibit seizures in some individuals but do not modify the disease itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. S. Arroyo, M.J. Brodie, G. Avanzini, C. Baumgartner, C. Chiron, O. Dulac, J.A. French, and J.M. Serratosa, Is refractory epilepsy preventable?, Epilepsia 43, 437–44 (2002).

    Article  PubMed  Google Scholar 

  2. W.R. Gowers, Epilepsy and other chronic convulsive diseases (London: Churchill, 1881).

    Google Scholar 

  3. G.V. Goddard, D.C. McIntyre, and C.K. Leech, A permanent change in brain function resulting from daily electrical stimulation, Exp Neurol 25, 295–330 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. A.K. McAllister, L.C. Katz, and D.C. Lo, Neurotrophin regulation of cortical dendritic growth requires activity, Neuron 17, 1057–1064 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. S.L. Patterson, T. Abel, T.A. Deuel, K.C. Martin, J.C. Rose, and E.R. Kandel, Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice, Neuron 16, 1137–114 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. M. Korte, H. Kang, T. Bonhoeffer, and E. Schuman, A role for BDNF in the late-phase of hippocampal long-term potentiation, Neuropharmacology 37, 553–559 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. L. Minichiello, M. Korte, D. Wolfer, R. Kuhn, K. Unsicker, V. Cestari, C. Rossi-Arnaud, H.P. Lipp, T. Bonhoeffer, and R. Klein, Essential role for TrkB receptors in hippocampus-mediated learning, Neuron 24, 401–414 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. D. Muller, Z. Djebbara-Hannas, P. Jourdain, L. Vutskits, P. Durbec, G. Rougon, and J.Z. Kiss, Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus, Proc Natl Acad Sci U S A 97, 4315–4320 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. B. Xu, W. Gottschalk, A. Chow, R.I. Wilson, E. Schnell, K. Zang, D. Wang, R.A. Nicoll, B. Lu, and L.F. Reichardt, The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB, J Neurosci 20, 6888–6897 (2000).

    PubMed  CAS  Google Scholar 

  10. L. Minichiello, A.M. Calella, D.L. Medina, T. Bonhoeffer, R. Klein, and M. Korte, Mechanism of TrkB-mediated hippocampal long-term potentiation, Neuron 36, 121–137 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. J.V. Nadler, B.W. Perry, and C.W. Cotman, Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3–CA4 afferents with kainic acid, Brain Res 182, 1–9 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. T. Sutula and O. Steward, Facilitation of kindling by prior induction of long-term potentiation in the perforant path, Brain Res 420, 109–117 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. G. Golarai and T.P. Sutula, Functional alterations in the dentate gyrus after induction of long-term potentiation, kindling, and mossy fiber sprouting, J Neurophysiol 75, 343–353 (1996).

    PubMed  CAS  Google Scholar 

  14. I. Spigelman, X.X. Yan, A. Obenaus, E.Y. Lee, C.G. Wasterlain, and C.E. Ribak, Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy, Neuroscience 86, 109–120 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. P.J. Isackson, MM. Huntsman, K.D. Murray, and CM. Gall, BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF, Neuron 6, 937–948 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. D. K. Binder, M.J. Routbort, and J.O. McNamara, Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus, J Neurosci 19, 4616–4626 (1999).

    PubMed  CAS  Google Scholar 

  17. X.P. He, L. Minichiello, R. Klein, and JO. McNamara, Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus. J Neurosci 22, 7502–7508 (2002).

    PubMed  CAS  Google Scholar 

  18. D.K. Binder, M.J. Routbort, T.E. Ryan, G.D. Yancopoulos, and J.O. McNamara, Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J Neurosci 19, 1424–1436 (1999).

    PubMed  CAS  Google Scholar 

  19. M. Kokaia, P. Ernfors, Z. Kokaia, E. Elmer, R. Jaenisch, and O. Lindvall, Suppressed epileptogenesis in BDNF mutant mice, Exp Neurol 133, 215–224 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. X.P. He, R. Kotloski, S. Nef, B.W. Luikart, L.F. Parada, and J.O. McNamara, Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model, Neuron 43, 31–42 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. CM. Gall, Seizure-induced changes in neurotrophin expression: implications for epilepsy, Exp Neurol 124, 150–166 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. R.J. Racine, Modification of seizure activity by electrical stimulation. II. motor seizure, Electroencephalogr Clin Neurophysiol 32, 281–294 (1972).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

McNamara, J.O., He, XP., Kotloski, R. (2005). Conditional Deletion of TrkB Prevents Epileptogenesis in the Kindling Model. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_24

Download citation

Publish with us

Policies and ethics