Skip to main content

Thermal Properties of Nanomaterials and Nanocomposites

  • Chapter
Thermal Conductivity

Part of the book series: Physics of Solids and Liquids ((PSLI))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. C. KittelIntroduction to Solid State Physics, 7th ed., (Wiley, New York 1996), p. 168–169.

    MATH  Google Scholar 

  2. S. IijimaHelical Microtubules of Graphitic Carbon Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. C. Journet, L. Alvarez, V. Micholet, T. Guillard, M. Lamy De La Chapelle, E. Anglaret, J. L. Sauvajol, S. Lefrant, P. Bernier, D. Laplaze, G. Flamant, and A. LoiseauSingle Wall Carbon Nanotubes: Two Ways of Production Syn. Met. 103, 2488 (1999).

    Article  Google Scholar 

  4. A. Thess, R. Lee, P. Nicolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. SmalleyCrystalline Ropes of Metallic Carbon Nanotubes Science 273, 483 (1996).

    Article  ADS  Google Scholar 

  5. H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. DresselhausBulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons Chem. Phys. Lett. 289, 602 (1998).

    Article  ADS  Google Scholar 

  6. R. Saito, M. S. Dresselhaus, and G. DresselhausPhysical Properties of Carbon Nanotubes (World Science, 1998).

    Google Scholar 

  7. M. S. Dresselhaus, G. Dresselhaus, and R. SaitoC60-Related Tubules Solid State Comm. 84, 201 (1992).

    Article  ADS  Google Scholar 

  8. M. S. Dresselhaus, Y.-M. Lin, O. Rabin, M. R. Black, and G. DresselhausNanowires, Springer Handboek of Nanotechnology, edited by Bharat Bhushan, Springer-Verlag Heidelberg, Germany, 99–145 (2004).

    Chapter  Google Scholar 

  9. D. T. Colbert and R. E. SmalleyFullerene Nanotubes for Molecular Electronics Trends In Biotech. 17, 46 (1999).

    Article  Google Scholar 

  10. K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, and Y. AndoElectrical Conductivities of Multi-Wall Carbon Nanotubes, Synth. Met. 103, 2543 (1999).

    Article  Google Scholar 

  11. J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, and A. ZettlThermoelectric Power of Single-Walled Carbon Nanotubes Phys. Rev. Lett. 80(5), 1042 (1998).

    Article  ADS  Google Scholar 

  12. J. E. Fischer and A. T. JohnsonElectronic Properties of Carbon Nanotubes, Curr. Opinion Solid State Mater. Sci. 4, 28 (1999).

    Article  Google Scholar 

  13. J. Vavro, M. C. Llaguno, B. C. Satishkumar, D. E. Luzzi, and J. E. FischerElectrical and Thermal Properties of C60-Filled Single-Wall Carbon Nanotubes, Appl. Phys. Lett. 80(8), 1450 (2002).

    Article  ADS  Google Scholar 

  14. A. B. Kaiser, Y. W. Park, G. T. Kim, E. S. Choi, G. Düsberg, and S. RothElectronic Transport in Carbon Nanotube Ropes and Mats, Synth. Met. 103, 2547 (1999).

    Article  Google Scholar 

  15. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. GreigThermoelectric Power of Metals (Plenum Press, 1996).

    Google Scholar 

  16. P. M. ChaikinOrganic Superconductivity (Plenum Press, New York, 1990).

    Google Scholar 

  17. P. G. Collins, K. Bradley, M. Ishigami, and A. ZettlExtreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 287, 1801 (2000).

    Article  ADS  Google Scholar 

  18. K. Bradley, S.-H. Jhi, P.G. Collins, J. Hone, M. L. Cohen, S. G. Louie, and A. ZettlIs the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive? Phys. Rev. Lett. 85(20), 4361 (2000).

    Article  ADS  Google Scholar 

  19. G. U. Sumanasekera, C. K. W. Adu, S. Fang, and P. C. EklundEffects of Gas Adsorption and Collisions on Electrical Transport in Single-Walled Carbon Nanotubes Phys. Rev. Lett. 85(5), 1096 (2000).

    Article  ADS  Google Scholar 

  20. D. Tomanek and M. A. SchluterGrowth Regimes of Carbon Clusters Phys. Rev. Lett. 67(17), 2331 (1991).

    Article  ADS  Google Scholar 

  21. T. Kostyrko, M. Bartkowiak, and G. D. MahanReflection by Defects in a Tight-Binding Model of Nanotubes Phys. Rev. B 59(4), 3241 (1999).

    Article  Google Scholar 

  22. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. L. Fang, J. L. Allen, and P. C. EklundGiant Thermopower in Carbon Nanotubes: A One-Dimensional Kondo System Phys. Rev. B 60(16), R11309 (1999).

    Article  ADS  Google Scholar 

  23. A. M. Rao (unpublished).

    Google Scholar 

  24. J. P. Small, L. Shi, and P. KimMesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes Solid State Comm. 127(2), 181–186 (2003).

    Article  ADS  Google Scholar 

  25. R. S. Ruoff and D. C. LorentsMechanical and Thermal Properties of Carbon Nanotubes Carbon 33(7), 925 (1995).

    Article  Google Scholar 

  26. J. Hone, M. Whitney, and A. ZettlThermal Conductivity of Single-Walled Carbon Nanotubes Synth. Met. 103, 2498 (1999).

    Article  Google Scholar 

  27. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. SmalleyElectrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films Appl. Phys. Lett. 77(5), 666 (2000).

    Article  ADS  Google Scholar 

  28. S. Berber, Y.-K. Kwon, and D. TomanekUnusually High Thermal Conductivity of Carbon Nanotubes Phys. Rev. Lett. 84(20), 4613 (2000).

    Article  ADS  Google Scholar 

  29. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. PryorThermal Diffusivity of Isotropically Enriched12C Diamond Phys. Rev. B 42, 1104 (1990).

    Article  ADS  Google Scholar 

  30. P. Kim, L. Shi, A. Majumdar, and P. L. McEuenMesoscopic Thermal Transport and Energy Dissipation in Carbon Nanotubes Physica B 323, 67 (2002).

    Article  ADS  Google Scholar 

  31. L. X. Benedict, S. G. Louie, and M. L. CohenHeat Capacity of Carbon Nanotubes Solid State Commun. 100(3), 177 (1996).

    Article  ADS  Google Scholar 

  32. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. FischerQuantized Phonon Spectrum of Single-Wall Carbon Nanotubes Science 289, 1730 (2000).

    Article  ADS  Google Scholar 

  33. M. W. Cole, V. H. Crespi, G. Stan, C. Ebner, J. M. Hartman, S. Moroni, and M. BoninsegniCondensation of Helium in Nanotube Bundles Phys. Rev. Lett. 84(17), 3883 (2000).

    Article  ADS  Google Scholar 

  34. J. C. Lasjaunias, K. Biljakovic, Z. Benes, and J. E. FischerLow-Temperature Specific Heat of Single-Wall Carbon Nanotubes Physica B 316–317, 468 (2002).

    Article  Google Scholar 

  35. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. LieberHigh Performance Silicon Nanowire Field Effect Transistors Nano Lett. 3(2), 149 (2003).

    Article  ADS  Google Scholar 

  36. J.-R. Kim, H. M. So, J. W. Park, J.-J. Kim, J. Kim, C. J. Lee, and S. C. LyuElectrical Transport Properties of Individual Gallium Nitride Nanowires Synthesized by Chemical-Vapor-Deposition Appl. Phys. Lett. 80(19), 3548 (2002).

    Article  ADS  Google Scholar 

  37. J. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. MansfieldBismuth Nanowire Arrays: Synthesis and Galvanometric Properties Phys. Rev. B 61, 2921 (2000).

    Article  ADS  Google Scholar 

  38. Y.-M. Lin, X. Sun, and M. S. DresselhausTheoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires Phys. Rev. B 62, 4610 (2000).

    Article  ADS  Google Scholar 

  39. Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, and M. S. DresselhausSemimetal-Semiconductor Transition in Bi1−x SbxAlloy Nanowires and Their Thermoelectric Properties Appl. Phys. Lett. 81(13), 2403 (2002).

    Article  ADS  Google Scholar 

  40. J. P. Heremans, C. M. Thrush, D. T. Morelli, and M.-C. WuThermoelectric Power of Bismuth Nanocomposites Phys. Rev. Lett. 88, 216801–1 (2002).

    Article  ADS  Google Scholar 

  41. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. ThompsonAnomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles Appl. Phys. Lett. 78(6), 718 (2001).

    Article  ADS  Google Scholar 

  42. K. N. ShrivastavaSpecific Heat of Nanocrystals Nano Lett. 2(1), 21 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Balaji, N. S. Gajbhiye, G. Wilde, and J. WeissmüllerMagnetic Properties of MnFe2O4Nanoparticles J. Magnetism and Magnetic Mat. 242–245, 617 (2002).

    Article  Google Scholar 

  44. J. M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, and O. ChauvetTransport Properties of PMMA-Carbon Nanotubes Composites Syn. Met. 121, 1215 (2001).

    Article  Google Scholar 

  45. E. Kymakis, I. Alexandou, and G. A. J. AmaratungaSingle-Walled Carbon Nanotube-Polymer Composites: Electrical, Optical and Structural Investigation Syn. Met. 127, 59 (2002).

    Article  Google Scholar 

  46. P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, and A. M. RaoElectronic Properties of Polyaniline/Carbon Nanotube Composites Syn. Met. 137, 1497 (2003).

    Article  Google Scholar 

  47. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlière, F. Chastel, and A. RoussetCarbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties Acta Mater. 48, 3803 (2000).

    Article  Google Scholar 

  48. M. J. Biercuk, M. C. Llagune, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. FischerCarbon Nanotube Composites for Thermal Management Appl. Phys. Lett. 80(15), 2767 (2002).

    Article  ADS  Google Scholar 

  49. Y. Gao and Y. BandoCarbon Nanothermometer Containing Gallium Nature 415, 599 (2002).

    Article  Google Scholar 

  50. C. K. W. Adu, G. U. Sumanasekera, B. K. Pradhan, H. E. Romero, and P. C. EklundCarbon Nanotubes: A Thermoelectric Nano-Nose Chem. Phys. Lett. 337, 31 (2001).

    Google Scholar 

  51. G. U. Sumanasekera, B. K. Pradhan, H. E. Romero, K. W. Adu, and P. C. EklundGiant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes Phys. Rev. Lett. 89(16), 166801–1 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Savage, T., Rao, A.M. (2004). Thermal Properties of Nanomaterials and Nanocomposites. In: Tritt, T.M. (eds) Thermal Conductivity. Physics of Solids and Liquids. Springer, Boston, MA . https://doi.org/10.1007/0-387-26017-X_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-26017-X_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48327-1

  • Online ISBN: 978-0-387-26017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics