Skip to main content

Analysis of Cardiac Myocyte Activity Dynamics with Micro-Electrode Arrays

  • Chapter
Advances in Network Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banach, K., Halbach, M., and Blatter, L.A. (2002). Spatio-temporal organization of calcium signaling and electrical activity in multicellular preparations of neonatal rat heart. Biophys. J., 82: 3188.

    Google Scholar 

  • Banach, K., Halbach, M., Hu, P., Hescheler, J., and Egert, U. (2003). Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am. J. Physiol. 284: H2114–H2123.

    CAS  Google Scholar 

  • Buitenweg, J.R., Rutten, W.L., and Marani, E. (2000). Finite element modeling of the neuron-electrode interface. IEEE Eng. Med. Biol. Mag. 19: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos, A., Moleiro, F., Acosta, H., Ferreira, A., Cox, M.M., Interian, A., Jr., and Myerburg, R.J. (1998a). Sudden Wenckebach periods and their relationship to neurocardiogenic syncope. Pacing Clin. Electrophysiol. 21: 1580–1588.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos, A., Moleiro, F., Pastor, J.A., Interian, A., Jr., and Myerburg, R.J. (1998b). Reverse alternating Wenckebach periods and other modes of regression of > or = 8:1 to 2:1 atrioventricular block. Am. J. Cardiol. 82: 528–531.

    Article  PubMed  CAS  Google Scholar 

  • De Ponti, F., Poluzzi, E., Cavalli, A., Recanatini, M., and Montanaro, N. (2002). Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview. Drug Saf. 25: 263–86.

    Article  PubMed  Google Scholar 

  • Egert, U., Heck, D., and Aertsen, A. (2002). 2-Dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 142: 268–274.

    Article  PubMed  Google Scholar 

  • Egert, U. and Meyer, T. (2005). Heart on a chip—Extracellular multielectrode recordings from cardiac myocytes in vitro, In: Dhein, S., Mohr, F.W., and Delmar, M., eds., Practical Methods in Cardiovascular Research. Springer, Stuttgart.

    Google Scholar 

  • Egert, U., Meyer, T., and Banach, K. (2003). Heart on a chip, In: Dhein, S. and Delmar, M., eds., Methods in Cardiovascular Research. Springer, Stuttgart.

    Google Scholar 

  • Fermini, B. and Fossa, A.A. (2003). The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discov. 2: 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Fromherz, P., Offenhäusser, A., Vetter, T., and Weis, J. (1991). A neuron-silicon junction: A Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252: 1290.

    Article  PubMed  CAS  Google Scholar 

  • Furshpan, E.J., Macleish, P.R., O’Lague, P.H., and Potter, D.D. (1976). Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Nat. Acad. Sci. U. S. A. 73: 4225–4229.

    Article  CAS  Google Scholar 

  • Guevara, M.R., Glass, L., and Shrier, A. (1981). Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214: 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  • Halbach, M.D., Egert, U., Hescheler, J., and Banach, K. (2003). Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell. Physiol. Biochem. 13: 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Henze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K.D., and Buzsáki, G. (2000). Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84: 390–400.

    PubMed  CAS  Google Scholar 

  • Heuschkel, M.O., Fejtl, M., Raggenbass, M., Bertrand, D., and Renaud, P. (2002). A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J. Neurosci. Meth. 114: 135–148.

    Article  Google Scholar 

  • Hirota, A., Kamino, K., Komuro, H., and Sakai, T. (1987). Mapping of early development of electrical activity in the embryonic chick heart using multiple-site optical recording. J. Physiol. (Lond.) 383: 711–728.

    CAS  Google Scholar 

  • Hofer, E., Urban, G., Spach, M.S., Schafferhofer, I., Mohr, G., and Platzer, D. (1994). Measuring activation patterns of the heart at a microscopic size scale with thin-film sensors. Am. J. Physiol. 266: H2136–H2145.

    PubMed  CAS  Google Scholar 

  • Igelmund, P., Fleischmann, B.K., Fischer, I.V., Soest, J., Gryshchenko, O., Sauer, H., Liu, Q., and Hescheler, J. (1999). Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue-culture. Pflug. Arch. Eur. J. Phys. 437: 669–679.

    Article  CAS  Google Scholar 

  • Israel, D.A., Barry, W.H., Edell, D.J., and Mark, R.G. (1984). An array of microelectrodes to stimulate and record from cardiac cells in culture. Am. J. Physiol. 247: H669–H674.

    PubMed  CAS  Google Scholar 

  • Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., and Gepstein, L. (2002). High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res. 91: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Kleber, A.G., Fast, V.G., Kucera, J., and Rohr, S. (1996). Physiology and pathophysiology of cardiac impulse conduction. Zeitschrift für Kardiologie 85: 25–33.

    PubMed  Google Scholar 

  • Kucera, J.P., Heuschkel, M.O., Renaud, P., and Rohr, S. (2000). Power-law behavior of beat-rate variability in monolayer cultures of neonatal rat ventricular myocytes. Circ. Res. 86: 1140–1145.

    PubMed  CAS  Google Scholar 

  • Lazzara, R. (1993). Antiarrhythmic drugs and torsade de pointes. Eur. Heart J. 44: 88–92.

    Google Scholar 

  • Mastrototaro, J.J., Massoud, H.Z., Pilkington, T.C., and Ideker, R.E. (1992). Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording. IEEE Trans. Biomed. Eng. 39: 271–379.

    Article  PubMed  CAS  Google Scholar 

  • Meiry, G., Reisner, Y., Feld, Y., Goldberg, S., Rosen, M., Ziv, N., and Binah, O. (2001). Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J. Cardiovasc. Electrophysiol. 12: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, J. M., Lin, W.I., and Samuelson, L.C. (1994). Transition in cardiac contractile sensitivity to calcium during the in vitro differentiation of mouse embryonic stem cells. J. Cell Biol. 126: 701–711.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, J.M., Lin, W.I., Johnston, R.A., Westfall, M.V., and Samuelson, L.C. (1995). Myosin heavy chain expression in contracting myocytes isolated during embryonic stem cell cardiogenesis. Circ. Res. 76: 710–719.

    PubMed  CAS  Google Scholar 

  • Nag, A.C., Lee, M.L., and Sarkar, F.H. (1996). Remodelling of adult cardiac muscle cells in culture: Dynamic process of disorganization and reorganization of myofibrils. J Muscle Res. Cell. Motil. 17: 313–34.

    Article  PubMed  CAS  Google Scholar 

  • Plonsey, R. (1977). Action potential sources and their volume conductor fields. Proc. IEEE 65: 601–611.

    Article  Google Scholar 

  • Rall, W. (1969). Distribution of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys. J. 9: 1509–1541.

    PubMed  CAS  Google Scholar 

  • Redfern, W.S., Carlsson, L., Davis, A.S., Lynch, W.G., MacKenzie, I., Palethorpe, S., Siegl, P.K., Strang, I., Sullivan, A.T., Wallis, R., Camm, A.J., and Hammond, T.G. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58: 32–45.

    Article  PubMed  CAS  Google Scholar 

  • Reppel, M., Pillekamp, F., Lu, Z.J., Halbach, M., Brockmeier, K., Fleischmann, B.K., Hascheler, J. (2004). Microelectrode arrays: a new tool to measure embryonic heart activity. J. Electrocardiol. 37 Suppl: 104–109.

    Article  PubMed  Google Scholar 

  • Rohr, S. (1990). A computerized device for long-term measurements of the contraction frequency of cultured rat heart cells under stable incubating conditions. Pflug. Arch. Eur. J. Phys. 416: 201–206.

    Article  CAS  Google Scholar 

  • Rohr, S. and Kucera, J. P. (1997). Involvement of the calcium inward current in cardiac impulse propagation: Induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys. J. 72: 754–766.

    Article  PubMed  CAS  Google Scholar 

  • Rohr, S., Kucera, J.P., and Kleber, A.G. (1997b). Form and function: Impulse propagation in designer cultures of cardiomyocytes. News Physiol. Sci. 12: 171–177.

    Google Scholar 

  • Rohr, S., Kucera, J.P., Fast, V.G., and Kleber, A.G. (1997a). Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275: 841–844.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, J.O., Eichner, G., Schmitt, H., Schrickel, J., Yang, A., Balta, O., Luderitz, B., and Lewalter, T. (2004). Heart rate variability in patients suffering from structural heart disease and decreased AV-nodal conduction capacity. Insights into the formation of heart rate variability. Z. Kardiol. 93: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.A., Khaw, B.A., Fallon, J.T., Locke, E., Rabito, C.A., Peto, C.A., and Homcy, C.J. (1986). The effect of phenothiazines upon maintenance of membrane integrity in the cultured myocardial cell. J. Mol. Cell Cardiol. 18: 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  • Spach, M.S. (1983). The role of cell-to-cell coupling in cardiac conduction disturbances. Adv. Exper. Med. Biol. 161: 61–77.

    CAS  Google Scholar 

  • Spach, M.S. and Heidlage, J.F. (1995). The stochastic nature of cardiac propagation at a microscopic level: Electrical description of myocardial architecture and its application to conduction. Circ. Res. 76: 366–380.

    PubMed  CAS  Google Scholar 

  • Spach, M.S. and Kootsey, J.M. (1983). The nature of electrical propagation in cardiac muscle. Am. J. Physiol. 244: H3–22.

    PubMed  CAS  Google Scholar 

  • Spach, M.S., Miller, W.T., Miller-Jones, E., Warren, R.B., and Barr, R.C. (1979). Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ. Res. 45: 188–204.

    PubMed  CAS  Google Scholar 

  • Sprössler, C., Denyer, M., Britland, S., Knoll, W., and Offenhäusser, A. (1999). Electrical recordings from rat cardiac muscle cells using field-effect transistors. Phys. Rev. E 60: 2171–2176.

    Article  Google Scholar 

  • Thomas, C.A., Springer, P.A., Loeb, G.W., Berwald-Netter, Y., and Okun, L.M. (1972). A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74: 61–66.

    Article  PubMed  Google Scholar 

  • Vieweg, W.V.R. (2002). Mechanisms and risks of electrocardiographic QT interval prolongation when using antipsychotic drugs. J. Clin. Psychiatry 63: 18–24.

    PubMed  CAS  Google Scholar 

  • Yamamoto, M., Honjo, H., Niwa, R., and Kodama, I. (1998). Low-frequency extracellular potentials recorded from the sinoatrial node. Cardiovasc. Res. 39: 360–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Egert, U., Banach, K., Meyer, T. (2006). Analysis of Cardiac Myocyte Activity Dynamics with Micro-Electrode Arrays. In: Taketani, M., Baudry, M. (eds) Advances in Network Electrophysiology. Springer, Boston, MA . https://doi.org/10.1007/0-387-25858-2_11

Download citation

Publish with us

Policies and ethics