Skip to main content

Remission, relapse, intestinal healing and repair

  • Chapter
Inflammatory Bowel Disease: From Bench to Bedside

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silen W. Gastric mucosal defense and repair. In: Johnson LR, ed. Physiology of the Gastrointestinal Tract, 2nd edn. New York: Raven Press, 1987:1055–69.

    Google Scholar 

  2. Göke M, Podolsky DK. Regulation of the mucosal epithelial barrier. Baillière’s Clin Gastroenterol 1996; 10:393–405.

    Google Scholar 

  3. Wilson AJ, Gibson PR. Epithelial migration in the colon: filling in the gaps. Clin Sci 1997; 93: 97–108.

    PubMed  CAS  Google Scholar 

  4. Gumbiner BM. Cell adhesion: the molecular basis of tisuue architecture and morphogenesis. Cell 1996; 84: 345–57.

    PubMed  CAS  Google Scholar 

  5. Mitchison TJ, Cramer LR. Actin-based cell motility and cell locomotion. Cell 1996; 84: 371–9.

    PubMed  CAS  Google Scholar 

  6. McCormack SA, Viar MJ, Johnson LR. Migration of IEC-6 cells: a model for mucosal healing. Am J Physiol 1992; 263: G426–35.

    PubMed  CAS  Google Scholar 

  7. Yuan Q, Viar MJ, Ray RM, Johnson LR. Putrescine does not support the migration and growth of IEC-6 cells. Am J Physiol 2000; 278: G49–56.

    CAS  Google Scholar 

  8. Zushi S, Shinomura Y, Kiyohara T et al. Role of prostaglandins in intestinal epithelial estitution stimulated by growth factors. Am J Physiol 1996; 270: G757–62.

    PubMed  CAS  Google Scholar 

  9. Blikslager AT, Roberts MC, Rhoads JM, Argenzio RA. Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J Clin Invest 1997; 100: 1928–33.

    PubMed  CAS  Google Scholar 

  10. Wilson AJ, Gibson PR. Short-chain fatty acids promote the migration of colonic epithelial cells in vitro. Gastroenterology 1997; 113:487–96.

    PubMed  CAS  Google Scholar 

  11. Ruthig DJ, Meckling-Gill KA. Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr 1999; 129: 1791–8.

    PubMed  CAS  Google Scholar 

  12. Horie-Sakata K, Shimada T, Hiraishi H, Terano A. Role of cyclooxygenase 2 in hepatocyte growth factor-mediated gastric epithelial restitution. J Clin Gastroenterol 1998; 27(Suppl. 1): S40–6.

    PubMed  Google Scholar 

  13. Morteau O, Morham SG, Sellon R et al. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J Clin Invest 2000; 105: 469–78.

    PubMed  CAS  Google Scholar 

  14. Santos MF, McCormack SA, Guo Z et al. Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest 1997; 100: 216–25.

    PubMed  CAS  Google Scholar 

  15. Koyama S, Podolsky DK. Differential expression of transforming growth factors α and β in rat intestinal epithelial cells. J Clin Invest 1989; 83: 1768–73.

    PubMed  CAS  Google Scholar 

  16. Kurokawa M, Lynch K, Podolsky DK. Effects of growth factors on an intestinal epithelial cell line: transforming growth factor β inhibits proliferation and stimulates differentiation. Biochem Biophys Res Commun 1987; 42: 775–82.

    Google Scholar 

  17. Podolsky DK, Babyatsky MW. Growth and development of the gastrointestinal tract. In: Yamada T, ed. Textbook of Gastroenterology, 2nd edn. Philadelphia: JB Lippincott, 1995: 546–77.

    Google Scholar 

  18. Suemori S, Ciacci C, Podolsky DK. Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J Clin Invest 1991; 87: 2216–221.

    PubMed  CAS  Google Scholar 

  19. Ohneda K, Ulshen MH, Fuller CR, D’Ercole AJ, Lund PK. Enhanced growth of small bowel in transgenic mice expressing human insulin-like growth factor I. Gastroenterology 1997; 112:444–54.

    PubMed  CAS  Google Scholar 

  20. Guo YS, Narayan S, Yallampalli C, Singh P. Characterization of insulin-like growth factor I receptors in human colon cancer. Gastroenterology 1992; 102: 1101–8.

    PubMed  CAS  Google Scholar 

  21. Park JHY, McCusker RH, Vanderhoof JA, Mohammadpour H, Harty RF, MacDonald RG. Secretion of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 by intestinal epithelial (IEC-6) cells: implications for autocrine growth regulation. Endocrinology 1992; 131: 1359–68.

    PubMed  CAS  Google Scholar 

  22. Steeb CB, Trahair JF, Read LC. Administration of insulin-like growth factor-I (IGF-I) peptides for three days stimulates proliferation of the small intestinal epithelium in rats. Gut 1995; 37: 630–8.

    PubMed  CAS  Google Scholar 

  23. Dignass AU, Lynch-Devaney K, Podolsky DK. Hepatocyte growth factor/scatter factor modulates intestinal epithelial proliferation and migration. Biochem Biophys Res Commun 1994; 202: 701–9.

    PubMed  CAS  Google Scholar 

  24. Fukamachi H, Ichinose M, Tsukada S et al. Hepatocyte growth factor region specifically stimulates gastrointestinal epithelial growth in primary culture. Biochem Biophys Res Commun 1994; 205: 1445–51.

    PubMed  CAS  Google Scholar 

  25. Göke M, Kanai M, Podolsky DK. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol 1998; 274: G809–18.

    PubMed  Google Scholar 

  26. Dignass AU, Tsunekawa S, Podolsky DK. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology 1994; 106: 1254–62.

    PubMed  CAS  Google Scholar 

  27. Housley RM, Morris CF, Boyle W et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest 1994; 94: 1764–77.

    PubMed  CAS  Google Scholar 

  28. Potten CS, Owen G, Hewitt D et al. Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after in-vivo administration of growth factors. Gut 1995; 36: 864–73.

    PubMed  CAS  Google Scholar 

  29. Beck PL, Podolsky DK. Growth factors in inflammatory bowel disease. Inflam Bowel Dis 1999; 5: 44–60.

    Article  CAS  Google Scholar 

  30. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol 1997; 273: E77–84.

    PubMed  CAS  Google Scholar 

  31. Brubaker PL, Izzo A, Hill M, Drucker DJ. Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol 1997; 272: G559–63.

    Google Scholar 

  32. Xiao Q, Boushey RP, Cino M, Drucker DJ, Brubaker PL. Circulating levels of glucagon-like peptide-2 in human subjects with inflammatory bowel disease. Am J Physiol Regul Integr Comp Physiol 2000; 278: R1057–63.

    PubMed  CAS  Google Scholar 

  33. Boushey RP, Yusta B, Drucker DJ. Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis. Am J Physiol 1999; 277: E937–47.

    PubMed  CAS  Google Scholar 

  34. Göke M, Kanai M, Podolsky DK. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol 1998; 274: G809–18.

    PubMed  Google Scholar 

  35. Simmons JG, Pucilowska JB, Lund PK. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors. Am J Physiol 1999; 276: G817–27.

    PubMed  CAS  Google Scholar 

  36. Kaiser GC, Polk DB. Tumor necrosis factor alpha regulates proliferation in a mouse intestinal cell line. Gastroenterology 1997; 112: 1231–40.

    PubMed  CAS  Google Scholar 

  37. Ciacci C, Lind SE, Podolsky DK. Transforming growth factor β regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology 1993; 105: 93–101.

    PubMed  CAS  Google Scholar 

  38. Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor β. Gastroenterology 1993; 105: 1323–32.

    PubMed  CAS  Google Scholar 

  39. Planchon SM, Martins CAP, Guerrant RL, Roche JK. Regulation of intestinal epithelial barrier function by TGF-β1. J Immunol 1994; 153: 5730–9.

    PubMed  CAS  Google Scholar 

  40. Hoffmann P, Zeeh JM, Lakshmanan J et al. Increased expression of transforming growth factor alpha precursors in acute experimental colitis in rats. Gut 1997; 41: 195–202.

    Article  PubMed  CAS  Google Scholar 

  41. Sottili M, Sternini C, Reinshagen M et al. Up-regulation of transforming growth factor alpha binding sites in experimental rabbit colitis. Gastroenterology 1995; 109: 24–31.

    PubMed  CAS  Google Scholar 

  42. Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996; 110:975–84.

    PubMed  CAS  Google Scholar 

  43. Egger B, Procaccino F, Lakshmanan J et al. Mice lacking transforming growth factor alpha have an increased susceptibility to dextran sulfate-induced colitis. Gastroenterology 1997; 113:825–32.

    PubMed  CAS  Google Scholar 

  44. Egger B, Carey HV, Procaccino F et al. Reduced susceptibility of mice overexpressing transforming growth factor alpha to dextran sodium sulphate induced colitis. Gut 1998; 43: 64–70.

    Article  PubMed  CAS  Google Scholar 

  45. Filipe MI, Osborn M, Linehan J, Sanidas E, Brito MJ, Jankowski J. Expression of transforming growth factor alpha, epidermal growth factor receptor and epidermal growth factor in precursor lesions to gastric carcinoma. Br J Cancer 1995; 71: 30–6.

    PubMed  CAS  Google Scholar 

  46. Sharp R, Babyatsky MW, Takagi H et al. Transforming growth factor alpha disrupts the normal program of cellular differentiation in the gastric mucosa of transgenic mice. Development 1995; 121: 149–61.

    PubMed  CAS  Google Scholar 

  47. Messa C, Russo F, Caruso MG, DiLeo A. EGF, TGF-αlpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol 1998; 37: 285–9.

    PubMed  CAS  Google Scholar 

  48. Barnard JA, Beauchamp RD, Russell WE, Dubois RN, Coffey RJ. Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology 1995; 108: 564–80.

    PubMed  CAS  Google Scholar 

  49. Chowdhury A, Fukuda R, Fukumoto S. Growth factor mRNA expression in normal colorectal mucosa and in uninvolved mucosa from ulcerative colitis patients. J Gastroenterol 1996; 31: 353–60.

    PubMed  CAS  Google Scholar 

  50. Wright NA, Pike CM, Elia G. Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature 1990; 343: 82–5.

    PubMed  CAS  Google Scholar 

  51. Bragg LE, Hollingsed TC, Thompson JS. Urogastrone reduces gut atrophy during parenteral alimentation. J Parenter Enteral Nutr 1990; 14: 283–6.

    CAS  Google Scholar 

  52. Ardawi MS. Effects of epidermal growth factor and glutamine-supplemented parenteral nutrition on the small bowel of septic rats. Clin Sci 1992; 82: 573–80.

    PubMed  CAS  Google Scholar 

  53. Petschow BW, Carter DL, Hutton GD. Influence of orally administered epidermal growth factor on normal and damaged intestinal mucosa in rats. J Pediatr Gastroenterol Nutr 1993; 17:49–58.

    Article  PubMed  CAS  Google Scholar 

  54. Procaccino F, Reinshagen M, Hoffmann P et al. Protective effect of epidermal growth factor in an experimental model of colitis in rats. Gastroenterology 1994; 107: 12–17.

    PubMed  CAS  Google Scholar 

  55. Luck MS, Bass P. Effect of epidermal growth factor on experimental colitis in the rat. J Pharmacol Exp Ther 1993; 264: 984–90.

    PubMed  CAS  Google Scholar 

  56. Meijssen MA, Brandwein SL, Reinecker HC, Bhan AK, Podolsky DK Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 1998; 274: G472–9.

    PubMed  CAS  Google Scholar 

  57. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–9.

    PubMed  CAS  Google Scholar 

  58. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-βeta-mediated oral tolerance. J Exp Med 1996; 183: 2605–16.

    PubMed  CAS  Google Scholar 

  59. Beck PL, Xavier RJ, Rosenberg I, Podolsky DK. Intestinal epithelial cell expression of TGF-β dominant negative receptor II (DNRII) results in decreased wound healing in vitro and increased susceptibility to colonic injury in vivo. Gastroenterology 2000; 118: A4843.

    Google Scholar 

  60. Ohtani H, Kagaya H, Nagura H. Immunohistochemical localization of transforming growth factor-beta. J Gastroenterol Suppl 1995; 30: 76–7.

    CAS  Google Scholar 

  61. Graham MF, Bryson GR, Diegelmann RF. Transforming growth factor β1 selectively augments collagen synthesis by human intestinal smooth muscle cells. Gastroenterology 1990; 99: 447–53.

    PubMed  CAS  Google Scholar 

  62. Mourelle M, Salas A, Guarner F, Crespo E, Garcia-Lafuente A, Malagelada JR. Stimulation of transforming growth factor-beta-1 by enteric bacteria in the pathogenesis of rat intestinal fibrosis. Gastroenterology 1998; 114: 519–26.

    PubMed  CAS  Google Scholar 

  63. Finch PW, Pricolo V, Wu A, Finkelstein SD. Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease. Gastroenterology 1996; 110:441–51.

    PubMed  CAS  Google Scholar 

  64. Brauchle M, Madlener M, Wagner AD et al. Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease. Am J Pathol 1996; 149: 521–9.

    PubMed  CAS  Google Scholar 

  65. Bajaj-Elliott M, Breese E, Poulsom R, Fairclough PD, MacDonald TT. Keratinocyte growth factor in inflammatory bowel disease. Increased mRNA transcripts in ulcerative colitis compared with CD in biopsies and isolated mucosal myofibroblasts. Am J Pathol 1997; 151: 1469–76.

    PubMed  CAS  Google Scholar 

  66. Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 1994; 266: 1253–5.

    PubMed  CAS  Google Scholar 

  67. Finch PW, Cheng AL. Analysis of the cellular basis of keratinocyte growth factor overexpression in inflammatory bowel disease. Gut 1999: 45: 848–55.

    Article  PubMed  CAS  Google Scholar 

  68. Zeeh JM, Procaccino F, Hoffmann P et al. Keratinocyte growth factor ameliorates mucosal injury in an experimental model of colitis in rats. Gastroenterology 1996; 110: 1077–83.

    PubMed  CAS  Google Scholar 

  69. Egger B, Procaccino F, Sarosi I, Tolmos J, Buchler MW, Eysselein VE. Keratinocyte growth factor ameliorates dextran sodium sulfate colitis in mice. Dig Dis Sci 1999; 44: 836–44.

    PubMed  CAS  Google Scholar 

  70. Miceli R, Hubert M, Santiago G et al. Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis. J Pharmacol Exp Ther 1999; 290: 464–71.

    PubMed  CAS  Google Scholar 

  71. Zimmermann EM, Sartor RB, McCall RD, Pardo M, Bender D, Lund PK. Insulinlike growth factor I and interleukin 1 beta messenger RNA in a rat model of granulomatous enterocolitis and hepatitis. Gastroenterology 1993; 105: 399–409.

    PubMed  CAS  Google Scholar 

  72. Zeeh JM, Hoffmann P, Sottili M, Eysselein VE, McRoberts JA. Up-regulation of insulinlike growth factor I binding sites in experimental colitis in rats. Gastroenterology 1995; 108:644–52.

    PubMed  CAS  Google Scholar 

  73. Howarth GS, Xian CJ, Read LC. Insulin-like growth factor-I partially attenuates colonic damage in rats with experimental colitis induced by oral dextran sulphate soium. Scand J Gastroenterol 1998; 33: 180–90.

    PubMed  CAS  Google Scholar 

  74. Thomas AG, Holly JM, Taylor F, Miller V. Insulin like growth factor-I, insulin like growth factor binding protein-1, and insulin in childhood Crohn’s disease. Gut 1993; 34: 944–7.

    PubMed  CAS  Google Scholar 

  75. Zimmermann EM, Li L, Hou YT, Cannon M, Christman GM, Bitar KN. IGF-I induces collagen and IGFBP-5 mRNA in rat intestinal smooth muscle. Am J Physiol 1997; 273: G875–82.

    PubMed  CAS  Google Scholar 

  76. Gosh S, Humphreys K, Papachrysostomou M, Ferguson A. Detection of insulin-like growth factor-I and transforming growth factor-beta in whole gut lavage fluid: a novel method of studying intestinal fibrosis. Eur J Gastroenterol Hepatol 1997; 9: 505–8.

    Google Scholar 

  77. Alexander RJ, Panja A, Kaplan-Liss E, Mayer L, Raicht RF. Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease. Dig Dis Sci 1995; 40: 485–94.

    PubMed  CAS  Google Scholar 

  78. Matsumo M, Shiota G, Umeki K, Kawasaki H, Kojo H, Miura K. Induction of plasma hepatocyte growth factor in acute colitis of mice. Inflam Res 1997; 46: 166–7.

    Google Scholar 

  79. Matsumo M, Shiota G, Umeki K, Kawasaki H, Kojo H, Miura K. Clinical evaluation of hepatocyte growth factor in patients with gastrointestinal and pancreatic diseases with special reference to inflammatory bowel disease. Res Commun Mol Pathol Pharmacol 1997; 97: 25–37.

    Google Scholar 

  80. Boulton TG, Nye SH, Robins DJ et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991; 65: 663–75.

    PubMed  CAS  Google Scholar 

  81. Bogoyevitch MA, Ketterman AJ, Sugden PH. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem 1995; 270: 29710–17.

    PubMed  CAS  Google Scholar 

  82. Sanchez I, Hughes RT, Mayer BJ et al. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 1994; 72: 794–8.

    Google Scholar 

  83. Derijard B, Hibi M, Wu IH et al. JNK1. A protein kinase stimulated by UV light and Ha-Ras that binds and phos-phorylates the c-Jun activation domain. Cell 1994; 76: 1025–37.

    PubMed  CAS  Google Scholar 

  84. Kyriakis JM, Banerjee P, Nikolakaki E et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994; 369: 156–60.

    PubMed  CAS  Google Scholar 

  85. Rouse J, Cohen P, Trigon S et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–37.

    PubMed  CAS  Google Scholar 

  86. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–11.

    PubMed  CAS  Google Scholar 

  87. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–6.

    PubMed  CAS  Google Scholar 

  88. Göke M, Kanai M, Lynch-Devaney K, Podolsky DK. Rapid mitogen-activated protein kinase activation by transforming growth factor alpha in wounded rat intestinal epithelial cells. Gastroenterology 1998; 114: 697–705.

    PubMed  Google Scholar 

  89. Polk DB. Epidermal growth factor receptor-stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology 1998; 114: 493–502.

    PubMed  CAS  Google Scholar 

  90. Pai R, Ohta M, Itani RM, Safreh IJ, Tarnawski AS. Induction of mitogen-activated protein kinase signal transduction pathway during gastric ulcer healing in rats. Gastroenterology 1998; 114:706–13.

    PubMed  CAS  Google Scholar 

  91. Sebolt-Leopold JS, Dudley DT, Herrera R et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999; 5: 810–16.

    PubMed  CAS  Google Scholar 

  92. Dieckgraefe BK, Weems DM. Epithelial injury induces Egr-1 and Fos expression by a pathway involving protein kinase C and ERK. Am J Physiol 1999; 276: G322–30.

    PubMed  CAS  Google Scholar 

  93. Dieckgraefe BK, Weems DM, Santoro SA, Alpers DH. ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced signal transduction. Biochem Biophys Res Commun 1997; 233: 389–94.

    PubMed  CAS  Google Scholar 

  94. Sands BE, Podolsky DK. The trefoil peptide family. Annu Rev Physiol 1996; 58: 253–73.

    PubMed  CAS  Google Scholar 

  95. Dignass A, Lynch-Devaney K, Kindon H, Thim L, Podols-ky DK. Trefoil peptides promote epithelial migration through a transforming growth factor b-independent pathway. J Clin Invest 1994; 94: 376–83.

    PubMed  CAS  Google Scholar 

  96. Mashimo H, Wu DC, Podolsky DK, Fishman MC. Impaired defence of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996; 274: 262–5.

    PubMed  CAS  Google Scholar 

  97. Liu D, el-Hariry I, Karayiannakis AJ et al. Phosphorylation of beta-catenin and epidermal growth factor receptor by intestinal trefoil factor. Lab Invest 1997; 77: 557–63

    PubMed  CAS  Google Scholar 

  98. Hermiston ML, Wong MH, Gordon JI. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev 1996; 10: 985–96

    PubMed  CAS  Google Scholar 

  99. Frisch SM, Francis H. Disruption of epithelial cel-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–26.

    PubMed  CAS  Google Scholar 

  100. Hague A, Hicks DJ, Bracey TS, Paraskeva C. Cell-cell contact and specific cytokines inhibit apoptosis of colonic epithelial cells: growth factors protect against c-myc-independent apoptosis. Br J Cancer 1997; 75: 960–8.

    PubMed  CAS  Google Scholar 

  101. Taupin DR, Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci USA 2000; 97: 799–804.

    PubMed  CAS  Google Scholar 

  102. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 1995; 109: 516–23.

    PubMed  CAS  Google Scholar 

  103. Babyatsky MW, deBeaumont M, Thim L, Podolsky DK. Oral trefoil peptides protect against ethanol-and indomethacin-induced gastric injury in rats. Gastroenterology 1996; 110: 489–97.

    PubMed  CAS  Google Scholar 

  104. Beck PL, Podolsky DK. Intestinal trefoil factor reduces the severity of chemotherapy-and radiotherapy-induced intestinal mucositis. Gastroenterology 1999; 116: A486.

    Google Scholar 

  105. Playford RJ, Marchbank T, Goodlad RA et al. Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage. Proc Natl Acad Sci USA 1996; 93: 2137–42.

    PubMed  CAS  Google Scholar 

  106. Wright NA, Poulsom R, Stamp GW et al. Epidermal growth factor (EGF/URO) induces expression of regulatory peptides in damaged human gastrointestinal tissues. J Pathol 1990;162: 279–84

    PubMed  CAS  Google Scholar 

  107. Wright NA, Poulsom R, Stamp G et al. Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology 1993; 104: 12–20.

    PubMed  CAS  Google Scholar 

  108. Itoh H, Tomita M, Uchino H et al. cDNA cloning of rat pS2 peptide and expression in acetic acid-induced colitis. Biochem J 1996; 318: 939–44.

    PubMed  CAS  Google Scholar 

  109. Taupin DR, Wu DC, Jeon WK, Devaney K, Wang TC, Podolsky DK. The trefoil gene family are co-ordinately expressed immediate-early genes: EGF receptor-and MAP kinase-dependent interregulation. J Clin Invest 1999; 103: R31–8.

    PubMed  CAS  Google Scholar 

  110. Ogata H, Podolsky DK. Trefoil peptide expression and secretion is regulated by neuropeptides and acetylcholine. Am J Physiol 1997; 273: G348–54.

    PubMed  CAS  Google Scholar 

  111. Podolsky DK, Lynch-Devaney K, Stow JL et al. Identification of human intestinal trefoil factor. Goblet-cell specific expression of a peptide targeted for apical secretion. J Biol Chcm 1993; 268: 6694–702.

    CAS  Google Scholar 

  112. Newton JL, Allen A, Westley BR, May FE. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut 2000; 46: 312–20

    PubMed  CAS  Google Scholar 

  113. Hoffmann W. A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide. J Biol Chem 1988; 263: 7686–90.

    PubMed  CAS  Google Scholar 

  114. Hauser F, Hoffmann W. P-domains as shuffled cysteine-rich modules in in integumentary mucin C.1 (FIM-C.1) from Xenopus laevis. J Biol Chem 1992; 267: 24620–4.

    PubMed  CAS  Google Scholar 

  115. Lefebvre O, Chenard MP, Masson R et al. Gastric mucosa abnormalities in mice lacking the pS2 trefoil protein. Science 1996; 274: 259–62.

    PubMed  CAS  Google Scholar 

  116. Tomasetto C, Masson R, Linares JL et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology 2000; 118: 70–80.

    PubMed  CAS  Google Scholar 

  117. Cook GA, Familari M, Thim L, Giraud AS. The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett 1999; 456: 155–9.

    PubMed  CAS  Google Scholar 

  118. Tran CP, Cook GA, Yeomans ND, Thim L, Giraud AS. Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 1999; 44: 636–42.

    Article  PubMed  CAS  Google Scholar 

  119. Hoosein NM, Thim L, Jørgensen KH, Brattain MG. Growth stimulatory effect of pancreatic spasmolytic polypeptide on cultured colon and breast tumor cells. FEBS Lett 1989; 247: 303–6.

    PubMed  CAS  Google Scholar 

  120. Thim L. A new family of growth factor-like peptides: ‘trefoil’ disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett 1989; 250: 85–90.

    PubMed  CAS  Google Scholar 

  121. Kato K, Chen MC, Nguyen M, Lehmann FS, Podolsky DK, Soil AH. Effects of growth factors and trefoil peptides on migration and replication in primary oxyntic cultures. Am J Physiol 1999; 276: Gl105–16.

    Google Scholar 

  122. Uchino H, Kataoka H, Itoh H, Hamasuna R, Koono M. Overexpression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo. Gastroenterology 2000; 118: 60–9.

    PubMed  CAS  Google Scholar 

  123. Carroll KM, Wong TT, Drabik DL, Chang EB. Differentiation of rat small intestinal epithelial cells by extracellular matrix. Am J Physiol 1988; 254: G355–60.

    PubMed  CAS  Google Scholar 

  124. Hahn U, Stallmach A, Hahn EG, Riecken EO. Basement membrane components are potent promoters of rat intestinal epithelial cell differentiation in vitro. Gastroenterology 1990; 98: 322–35.

    PubMed  CAS  Google Scholar 

  125. Olson AD, Pysher T, Bienkowski RS. Organization of intestinal epithelial cells into multicellular structures requires laminin and functional actin microfilaments. Exp Cell Res 1991; 192:543–9.

    PubMed  CAS  Google Scholar 

  126. Simo P, Simon-Assmann P, Arnold C, Kedinger M. Mesenchyme-mediated effect of dexamethasone on laminin in cocultures of embryonic gut epithelial cells and mesenchyme-derived cells. J Cell Sci 1992; 101: 161–71.

    PubMed  CAS  Google Scholar 

  127. Moore R, Madara JL, MacLeod RJ. Enterocytes adhere preferentially to collagen IV in a differentially regulated divalent cation-dependent manner. Am J Physiol 1994; 266: G1099–107.

    PubMed  CAS  Google Scholar 

  128. Turowski GA, Rashid Z, Hong F, Madri JA, Basson MD. Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res 1994; 54: 5974–80.

    PubMed  CAS  Google Scholar 

  129. Vachon PH, Beaulieu JF. Extracellular heterotrimeric laminin promotes differentiation in human enterocytes. Am J Physiol 1995; 268: G857–67.

    PubMed  CAS  Google Scholar 

  130. Timpl R, Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol 1986; 29: 1–112.

    PubMed  CAS  Google Scholar 

  131. Laurie GW, Leblond CP, Martin GR. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol 1982; 95: 340–4.

    PubMed  CAS  Google Scholar 

  132. Quaroni A, Isselbacher KJ, Ruoshlahti E. Fibronectin synthesis by epithelial crypt cells of rat small intestine. Proc Natl Acad Sci USA 1978; 75: 5548–52.

    PubMed  CAS  Google Scholar 

  133. Göke M, Zuk A, Podolsky DK. Regulation and function of extracellular matrix in intestinal epithelial restitution in vitro. Am J Physiol 1996; 271: G729–40.

    PubMed  Google Scholar 

  134. Hahn U, Schuppan D, Hahn EG, Merker HJ, Riecken EO. Intestinal cells produce basement membrane proteins in vitro. Gut 1987; 28: S143–51.

    Google Scholar 

  135. Simo P, Bouziges F, Lissitzky JC, Sorokin L, Kedinger M, Simon-Assmann P. Dual and asynchronous deposition of laminin chains at the epithelial-mesenchymal interface in the gut. Gastroenterology 1992; 102: 1835–45.

    PubMed  CAS  Google Scholar 

  136. Weiser MM, Sykes DE, Killen PD. Rat intestinal basement membrane synthesis. Epithelial versus non epithelial contributions. Lab Invest. 1990;62:325–30.

    PubMed  CAS  Google Scholar 

  137. Trier JS, Allan CH, Abrahamson DR, Hagen SJ. Epithelial basement membrane of mouse jejunum. Evidence for laminin turnover along the entire crypt-villus axis. J Clin Invest 1990; 86: 87–95.

    PubMed  CAS  Google Scholar 

  138. O’Keefe EJ, Payne RE, Russell N, Woodley DT. Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol 1985; 85: 125–30.

    PubMed  CAS  Google Scholar 

  139. Sarret Y, Stamm C, Jullien D, Schmitt D. Keratinocyte migration is partially supported by the cell-binding domain of fibronectin and is RGDS-dependent. J Invest Dermatol 1992; 99: 656–9.

    PubMed  CAS  Google Scholar 

  140. Basson MD, Modlin IM, Flynn SD, Jena BP, Madri JA. Independent modulation of enterocyte migration and proliferation by growth factors, matrix proteins, and pharmacologic agents in an in vitro model of mucosal healing. Surgery 1992; 112:299–307.

    PubMed  CAS  Google Scholar 

  141. Moore R, Madri J, Carlson S, Madara JL. Collagens facilitate epithelial migration in restitution of native Guinea pig intestinal epithelium. Gastroenterology 1992; 102: 119–30.

    PubMed  CAS  Google Scholar 

  142. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989; 58: 575–606.

    PubMed  CAS  Google Scholar 

  143. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867–9.

    PubMed  CAS  Google Scholar 

  144. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–8.

    PubMed  CAS  Google Scholar 

  145. Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 1994; 79: 1005–13.

    PubMed  CAS  Google Scholar 

  146. Schuppan D, Schmid M, Somasundaram R et al. Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 1998; 114: 139–52.

    PubMed  CAS  Google Scholar 

  147. MacDonald TT, Pender SL. Proteolytic enzymes in inflammatory bowel disease. Inflam Bowel Dis 1998; 4: 157–64.

    CAS  Google Scholar 

  148. Vaalamo M, Karjalainen-Lindsberg ML, Puolakkainen P, Kere J, Saarialho-Kere U. Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macro-phage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations. Am J Pathol 1998; 152: 1005–14.

    PubMed  CAS  Google Scholar 

  149. Baugh MD, Perry MJ, Hollander AP et al. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 1999; 117: 814–22.

    PubMed  CAS  Google Scholar 

  150. Louis E, Ribbens C, Godon A et al. Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by inflamed mucosa in inflammatory bowel disease. Clin Exp Immunol 2000; 120: 241–6.

    PubMed  CAS  Google Scholar 

  151. Sykes AP, Bhogal R, Brampton C et al. The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease. Aliment Pharmacol Ther 1999; 13: 1535–1542.

    PubMed  CAS  Google Scholar 

  152. Deane HW. Some electron microscopic observations on the lamina propria of the gut, with some comments on the close association of macrophages, plasma cells and eosinophils. Anat Rec 1964; 149: 453–73.

    PubMed  CAS  Google Scholar 

  153. Donellan WL. The structure of the colonic mucosa. The epithelium and subepithelial reticulo-histiocytic complex. Gastroenterology 1965; 49: 496–514.

    Google Scholar 

  154. Mahida YR, Galvin AM, Gray T et al. Migration of human intestinal lamina propria lymphocytes, macrophages and eosinophils following the loss of surface epithelial cells. Clin Exp Immunol 1997; 109: 377–86.

    PubMed  CAS  Google Scholar 

  155. McAlindon ME, Gray T, Galvin A, Sewell HF, Podolsky DK, Mahida YR. Differential lamina propria cell migration via basement membrane pores of inflammatory bowel disease mucosa. Gastroenterology 1998; 115: 841–8.

    PubMed  CAS  Google Scholar 

  156. Mahida YR, Beltinger J, Makh S et al. Adult human colonic subepithelial myofibroblasts express extracellular matrix proteins and cyclooxygenase-1 and-2. Am J Physiol 1997; 273: G1341–8.

    PubMed  CAS  Google Scholar 

  157. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277: C1–9.

    PubMed  CAS  Google Scholar 

  158. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol 1999; 277: C183–201.

    PubMed  CAS  Google Scholar 

  159. Graham MF, Diegelmann RF, Elson CO et al. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology 1988; 94: 257–65.

    PubMed  CAS  Google Scholar 

  160. Stallmach A, Schuppan D, Riese HH, Matthes H, Riecken EO. Increased collagen type III synthesis in fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology 1992; 102: 1920–9.

    PubMed  CAS  Google Scholar 

  161. Graham MF, Drucker DEM, Diegelmann RF, Elson CO. Collagen synthesis by human intestinal smooth muscle cells in culture. Gastroenterology 1987; 92: 400–5.

    PubMed  CAS  Google Scholar 

  162. Strong SA, Pizarro TT, Klein JS, Cominelli F, Fiocchi C. Proinflammatory cytokines differentially modulate their own expression in human intestinal mucosal mesenchymal cells. Gastroenterology 1998; 114: 1244–56.

    PubMed  CAS  Google Scholar 

  163. Jobson TM, Billington CK, Hall IP. Regulation of proliferation of human colonic subepithelial myofibroblasts by mediators important in intestinal inflammation. J Clin Invest 1998; 101:2650–7.

    Article  PubMed  CAS  Google Scholar 

  164. Plateroti M, Rubin DC, Duluc I et al. Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics. Am J Physiol 1998; 274: G945–54.

    PubMed  CAS  Google Scholar 

  165. Munz B, Smola H, Engelhardt F et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 1999; 18: 5205–15.

    PubMed  CAS  Google Scholar 

  166. Dammeier J, Brauchle M, Falk W, Grotendorst GR, Werner S. Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? Int J Biochem Cell Biol 1998; 30: 909–22.

    PubMed  CAS  Google Scholar 

  167. Slonim AE, Bulone L, Damore MB, Goldberg T, Wingertzahn MA, McKinley MJ. A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med 2000; 342: 1633–7.

    PubMed  CAS  Google Scholar 

  168. Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 1999; 91: 1922–32.

    PubMed  CAS  Google Scholar 

  169. Rudolph KL, Chang S, Lee HW et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999; 96: 701–12.

    PubMed  CAS  Google Scholar 

  170. Kagnoff MF. Current concepts in mucosal immunity. III. Ontogeny and function of γ/δ T cell in the intestine. Am J Physiol 1998; 274: G455–8.

    PubMed  CAS  Google Scholar 

  171. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182–205.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Göke, M.N., Podolsky, D.K. (2003). Remission, relapse, intestinal healing and repair. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics