Skip to main content

Variable Neighborhood Search for Extremal Graphs. XI. Bounds on Algebraic Connectivity

  • Chapter
Graph Theory and Combinatorial Optimization

Abstract

The algebraic connectivity a(G) of a graph G = (V, E) is the second smallest eigenvalue of its Laplacian matrix. Using the AutoGraphiX (AGX) system, extremal graphs for algebraic connectivity of G in function of its order n = |V| and size m = |E| are studied. Several conjectures on the structure of those graphs, and implied bounds on the algebraic connectivity, are obtained. Some of them are proved, e.g., if GK n

$$a\left( G \right) \leqslant \left\lfloor { - 1 + \sqrt {1 + 2m} } \right\rfloor $$

which is sharp for all m ≥ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appel, K. and Haken, W. (1977a). Every planar map is four colorable. I. Discharging. Illinois Journal of Mathematics, 21:429–490.

    MathSciNet  Google Scholar 

  • Appel, K. and Haken, W. (1977b). Every planar map is four colorable. II. Reducibility. Illinois Journal of Mathematics, 21:491–567.

    MathSciNet  Google Scholar 

  • Appel, K. and Haken, W. (1989). Every Planar Map Is Four Colorable. Contemporary Mathematics, vol. 98. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Biggs, N. (1993). Algebraic Graph Theory, 2 ed. Cambridge University Press.

    Google Scholar 

  • Caporossi, G. and Hansen, P. (2000). Variable neighborhood search for extremal graphs. I. The AutoGraphiX system. Discrete Mathematics, 212:29–44.

    Article  MathSciNet  Google Scholar 

  • Caporossi, G. and Hansen, P. (2004). Variable neighborhood search for extremal graphs. V. Three ways to automate finding conjectures. Discrete Mathematics, 276:81–94.

    Article  MathSciNet  Google Scholar 

  • Cvetković, D., Kraus, L., and Simić, S. (1981). Discussing Graph Theory with a Computer. I. Implementation of Graph Theoretic Algorithms. Univ. Beograd Publ. Elektrotehn. Fak, pp. 100–104.

    Google Scholar 

  • Cvetković, D. and Kraus, L. (1983). “Graph” an Expert System for the Classification and Extension of Knowledge in the Field of Graph Theory, User's Manual. Elektrothen. Fak., Beograd.

    Google Scholar 

  • Cvetković, D. and Simié, S. (1994). Graph-theoretical results obtained by the support of the expert system “graph.” Bulletin de l'Académie Serbe des Sciences et des Arts, 19:19–41.

    Google Scholar 

  • Diestel, R. (1997). Graph Theory, Springer.

    Google Scholar 

  • Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–305.

    MATH  MathSciNet  Google Scholar 

  • Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, Springer.

    Google Scholar 

  • Hansen, P. (2002). Computers in graph theory. Graph Theory Notes of New York, 43:20–34.

    MathSciNet  Google Scholar 

  • Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3):449–467.

    Article  MathSciNet  Google Scholar 

  • Harary, F. (1962). The maximum connectivity of a graph. Proceedings of the National Academy of Sciences of the United States of America, 48:1142–1146.

    Article  PubMed  MATH  ADS  Google Scholar 

  • McKay, B.D. (1990). Nauty User's Guide (Version 1.5). Technical Report, TR-CS-90-02, Department of Computer Science, Australian National University.

    Google Scholar 

  • McKay, B.D. (1998). Isomorph-free exhaustive generation. Journal of Algorithms, 26:306–324.

    Article  MATH  MathSciNet  Google Scholar 

  • Merris, R. (1994). Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197/198:143–176.

    Article  MathSciNet  Google Scholar 

  • Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24(11):1097–1100.

    Article  MathSciNet  Google Scholar 

  • Robertson, N., Sanders, D., Seymour, P., and Thomas, R. (1997). The four-colour theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44.

    Article  MathSciNet  Google Scholar 

  • Soltès, L. (1991). Transmission in graphs: A bound and vertex removing. Mathematica Slovaca, 41(1):11–16.

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Belhaiza, S., de Abreu, N.M.M., Hansen, P., Oliveira, C.S. (2005). Variable Neighborhood Search for Extremal Graphs. XI. Bounds on Algebraic Connectivity. In: Avis, D., Hertz, A., Marcotte, O. (eds) Graph Theory and Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-25592-3_1

Download citation

Publish with us

Policies and ethics