Skip to main content

Innate and Adaptive Immunity to Systemic Candida albicans Infection

  • Chapter
Fungal Immunology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira, S. (2003). Mammalian Toll-like receptors. Curr. Opin. Immunol. 15: 5–11.

    CAS  PubMed  Google Scholar 

  • Aratani, Y., Kura, F., Watanabe, H., Akagawa, H., Takano, Y., Suzuki, K., Dinauer, M.C., Maeda, N., and Koyama, H. (2002). Relative contribution of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med. Mycol. 40: 557–563.

    CAS  PubMed  Google Scholar 

  • Ashman, R.B. (1998). Candida albicans: Pathogenesis, immunity and host defence. Res. Immunol. 149: 281–288.

    CAS  PubMed  Google Scholar 

  • Bacci, A., Montagnoli, C., Perruccio, K., Bozza, S., Gaziano, R., Pitzurra, L., Velardi, A., d’Ostiani, C.F., Cutler, J.E., and Romani, L. (2002). Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J. Immunol. 168: 2904–2913.

    CAS  PubMed  Google Scholar 

  • Belanger, P.H., Johnston, D.A., Fratti, R.A., Zhang, M., and Filler, S.G. (2002). Endocytosis of Candida albicans by vascular endothelial cells is associated with tyrosine phosphorylation of specific host cell proteins. Cell. Microbiol. 4: 805–812.

    Article  CAS  PubMed  Google Scholar 

  • Bellocchio, S. Montagnoli, C., Bozza, S., Gaziano, R., Rossi, G., Mambula, S.S., Vecchi, A., Mantovani, A., Levitz, S.M., and Romani, L. (2004). The contribution of the Toll-like receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172: 3059–3069.

    CAS  PubMed  Google Scholar 

  • Bodey, G. P., Buckley, M., Sathe, Y. S., and Freireich, E. J. (1966). Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 64: 328–340.

    CAS  PubMed  Google Scholar 

  • Bogdan, C., Rollinghoff, M., and Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12: 64–76.

    CAS  PubMed  Google Scholar 

  • Bohme, A., Karthaus, M., and Hoelzer, D. (1999). Antifungal prophylaxis in neutropenic patients with hematologic malignancies: Is there a real benefit? Chemotherapy 45: 224–232.

    CAS  PubMed  Google Scholar 

  • Bozza, S., Montagnoli, C., Gaziano, R., Rossi, G., Nkwanyuo, G., Bellocchio, S., and Romani, L. (2003). Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22: 857–864.

    Google Scholar 

  • Bromuro, C., Torosantucci, A., Chiani, P., Conti, S., Polonelli, L., and Cassone, A. (2002). Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated candidiasis in recipients of a Candida albicans vaccine. Infect. Immun. 70: 5462–5470.

    Article  CAS  PubMed  Google Scholar 

  • Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M., and Zanovello, P. (2003). l-Arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24: 302–306.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A.J. (2002). Expression of growth form-specific factors during morphogenesis in Candida albicans. In R.A. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, DC, pp. 87–106.

    Google Scholar 

  • Brown, G.D., Herre, B., William, D.L., Willment, J.A., Marshall, A.S., and Gordon, S. (2003). Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197: 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  • Buentke, E. and Scheynius, A. (2003). Dendritic cells and fungi. APMIS 111: 789–796.

    Article  CAS  PubMed  Google Scholar 

  • Calderone, R.A. (eds.) Candida and Candidiasis. ASM Press, Washington, DC, 2002.

    Google Scholar 

  • Calderone, R. (1994). Molecular pathogenesis of fungal infections. Trends Microbiol. 2: 461–463.

    Article  CAS  PubMed  Google Scholar 

  • Cambi, A., Gijzen, K., de Vries, J.M., Torensma, R., Joosten, B., Adema, G.J., Netea, M.G., Kullberg, B.J., Romani, L., and Figdor, C.G. (2003). The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33: 532–538.

    Article  CAS  PubMed  Google Scholar 

  • Casadevall, A., Feldmesser, M., and Pirofski, L.-A. (2002). Induced humoral immunity and vaccination against major human fungal pathogens. Curr. Opin. Microbiol. 5: 386–391.

    Article  CAS  PubMed  Google Scholar 

  • Cenci, E., Mencacci, A., Del Sero, G., Bistoni, F., and Romani L. (1997). Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J. Infect. Dis. 176: 217–226.

    CAS  PubMed  Google Scholar 

  • Chauhan, N., Inglis, D., Roman, E., Pla, J., Li, D., Calera, J.A., and Calderone, R. (2003). Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell. 2: 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, V.C., Yuen, K.Y., Chan, W.M., Wuong, S.S., Ma, E.S., and Chan, R.M. (2000). Immunorestitution disease involving the innate and adaptive response. Clin. Infect. Dis. 30: 882–892.

    Article  CAS  PubMed  Google Scholar 

  • Chiani, P., Bromuro, C., and Torosantucci, A. (2000). Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans. Infect. Immun. 68: 5628–5634.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E.H., Foster, C.B., Taylor, J.G., Erichsen, H.C., Chen, R.A., Walsh, T.J., Anttila, V.J., Ruutu, T., Palotie, A., and Chanock, S.J. (2003). Association between chronic disseminated candidiasis in adult acute leukemia and common IL4 promoter haplotypes. J. Infect. Dis. 187: 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  • Claudia, M., Bacci, A., Silvia, B., Gaziano, R., Spreca, A., and Romani, L. (2002). The interaction of fungi with dendritic cells: Implications for TH immunity and vaccination. Curr. Mol. Med. 2: 507–524.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, G., Doyle, S., and Kavanagh, K. (2000). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol. Med. Microbiol. 27: 163–169.

    CAS  PubMed  Google Scholar 

  • Coste, A., Duboourdeau, M., Linas, M.D., Cassaing, S., Lepert, J.C., Balard, P., Chalmeton, S., Bernard, J., Orfila, C., Seguela, J.P., and Pipy, B. (2003). PPARgamma promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity 19: 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Cutler, J.E., Granger, B.L., and Han, Y. (2002). Immunoprotection against Candidiasis. In R.A. Calderone (ed.), Candida and Candidiasis. ASM press, Washington DC:, pp. 243–256.

    Google Scholar 

  • Fearon, D.T. and Locksley, R.M. (1996). The instructive role of innate immunity in the acquired immune response. Science 272: 50–53.

    CAS  PubMed  Google Scholar 

  • Fè d’Ostiani, C., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P., and Romani, L. (2000). Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191: 1661–1674.

    Google Scholar 

  • Fidel, P. L., Jr. and Sobel, J. D. (1994). The role of cell-mediated immunity in candidiasis. Trends Microbiol. 6: 202–206.

    Google Scholar 

  • Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., and Underhill, D.M. (2003). Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, J., Wessels, D., Lockhart, S.R., and Soll, D.R. (2004). Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect. Immun. 72: 667–677.

    Article  CAS  PubMed  Google Scholar 

  • Georgopapadakou, N.H. and Walsh, T.J. (1996). Antifungal agents: Chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 40: 279–291.

    CAS  PubMed  Google Scholar 

  • Gor, D.O., Rose, N.R., and Greenspan, N.S. (2003). TH1-TH2: A procustean paradigm. Nat. Immunol. 4: 503–505.

    Article  CAS  PubMed  Google Scholar 

  • Gow, N.A., Brown, A.J., and Odds, F.C. (2002). Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5: 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, A.J. and Holdon, M.D. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med. Mycol. 37: 375–389.

    Google Scholar 

  • Han, Y., Kozel, T.R., Zhang, M.X., MacGill, R.S., and Carroll, M.C. (2001). Complement is essential for protection by an IgM and IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J. Immunol. 167: 1550–1557.

    CAS  PubMed  Google Scholar 

  • Herring, A.C. and Huffnagle, G.B. (2001). Innate immunity to fungi. In S.H.E. Kaufmann, A. Sher, and R. Ahmed (eds), Immunology of Infectious Diseases. ASM Press, Washington, DC, pp. 127–137.

    Google Scholar 

  • Hoffmann, J.A. and Reichhart, J.M. (2002). Drosophila innate immunity: An evolutionary perspective. Nat. Immunol. 3: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Q., Liu, D., Majewski, P., Schulte, L.C., Korn, J.M., Young, R.A., Lander, E.S., and Hacohen, N. (2001). The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870–875.

    CAS  PubMed  Google Scholar 

  • Ibata-Ombetta, S., Idziorek, T., Trinel, P.A., Poulain, D., and Jouault, T. (2003). Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J. Biol. Chem. 278: 13086–13093.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis, W.R. (1995). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin. Infect. Dis. 20: 1526–1530.

    CAS  PubMed  Google Scholar 

  • Jones-Carson, J., Vazquez-Torres, A., van der Heyde, H.C., Warner, T., Wagner, R.D., and Balish, E. (1995). Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat. Med. 1: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • Jouault, T., Ibata-Ombetta, S., Takeuchi, O., Trinel, P.A., Sacchetti, P., Lefebvre, P., Akira, S., and Poulain, D. (2003). Candida albicans phospholipomannan is sensed through Toll-like receptors. J. Infect. Dis. 188: 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Kaposzta, R., Marodi, L., Hollinshead, M., Gordon, S., and da Silva R.P. (1999). Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans. J. Cell Sci. 112: 3237–3248.

    CAS  PubMed  Google Scholar 

  • Kozel, T.R. (1998). Complement activation by pathogenic fungi. Res. Immunol. 149: 309–320.

    CAS  PubMed  Google Scholar 

  • Kozel, T.R., MacGill, R.S., Percival, A., and Zhou, Q. (2004). Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. Infect. Immun. 72: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Kullberg, B., Vogels, M.T.E., and van der Meer, J.W.M. (1994). Immunomodulators in bacterial and fungal infections. A review of their therapeutic potential. Clin. Immunother. 1: 43–55.

    Google Scholar 

  • Kullberg, B.J. and Anaissie, E.J. (1998). Cytokines as therapy for opportunistic fungal infections. Res. Immunol. 149: 478–488.

    CAS  PubMed  Google Scholar 

  • Lan, C.Y., Newport, G., Murillo, L.A., Jones, T., Scherer, S., Davis, R.W., and Agabian, N. (2002). Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99: 14907–14912.

    Article  CAS  PubMed  Google Scholar 

  • La Sala, A., Urbani, F., Torosantucci, A., Cassone, A., and Ausiello, C. (1996). Mannoproteins from Candida albicans elicit a Th1-type-1 cytokine profile in human Candida specific long-term T cell cultures. J. Biol. Regul. Homeost. Agents 10: 8–12.

    PubMed  Google Scholar 

  • La Valle, R., Sandini, S., Gomez, M.J., Mondello, F., Romagnoli, G., Nisini, R., and Cassone, A. (2000). Generation of a recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans. Infect. Immun. 68: 6777–6784.

    Article  PubMed  Google Scholar 

  • Letterio, J.J., Lehrnbecher, T., Pollack, G., Walsh, T.J., and Chanock, S.J. (2001). Invasive candidiasis stimulates hepatocyte and monocyte production of active transforming growth factor beta. Infect. Immun. 69: 5115–5120.

    Article  CAS  PubMed  Google Scholar 

  • Lilic, D. (2002). New perspectives on the immunology of chronic mucocutaneous candidiasis. Curr. Opin. Infect. Dis. 15: 143–147.

    PubMed  Google Scholar 

  • Lilic, D., Gravenor, I., Robson, N., Lammas, D.A., Drysdale, P., Calvert, J.E., Cant, A.J., and Abinum, M. (2003). Deregulated production of protective cytokines in response to Candida albicans infection in patients with chronic mucocutaneous candidiasis. Infect. Immun. 71: 5690–5699.

    Article  CAS  PubMed  Google Scholar 

  • Liston, A., Lesage, S., Wilson, J., Peltonen, L., and Goodnow, C. C. (2003). Air regulates negative selection of organ-specific T cells. Nat. Immunol. 4: 350–435.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Kang, K., Takahara, M., Cooper, K.D., and Ghannoum, M.A. (2001). Hyphae and yeasts of Candida albicans differentially regulate interleukin-12 production by human blood monocytes: Inhibitory role of C. albicans germination. Infect. Immun. 69: 4695–4697.

    CAS  PubMed  Google Scholar 

  • Lorenz, M.C. and Fink, G.R. (2001). The glyoxylate cycle is required for fungal virulence. Nature 412: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Magliani, W., Conti, S., de Bernardis, F., Gerloni, M., Bertolotti, D., Mozzoni, P., Cassone, A., and Polonelli, L. (1997). Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity. Nat. Biotechnol. 15: 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Magliani, W., Conti, S., Arseni, S., Frazzi, R., Salati, A., and Polonelli, L. (2001). Killer anti-idiotypes in the control of fungal infections. Curr. Opin. Investig. Drugs 2: 477–479.

    CAS  PubMed  Google Scholar 

  • Mansour, M.K. and Levitz, S.M. (2002). Interactions of fungi with phagocytes. Curr. Opin. Microbiol. 5: 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Marodi, L. (2002). Deficient interferon-gamma receptor-mediated signalling in neonatal macrophages. Acta Paediatr. Suppl. 91: 117–119.

    CAS  PubMed  Google Scholar 

  • Marodi, L., Schreiber, S., Anderson, D.C., MacDermott, R.P., Korchak, H.M., and Johnston, R.B. Jr. (1993). Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J. Clin. Invest. 91: 2596–2601.

    CAS  PubMed  Google Scholar 

  • Marquis, G., Garzon, S., Montplaisir, S., Strykowski, H., and Benhamou, N. (1991). Histochemical and immunochemical study of the fate of Candida albicans inside human neutrophil phagolysosomes. J. Leukoc. Biol. 50: 587–599.

    CAS  PubMed  Google Scholar 

  • Marr, K.A., Balajee, S.A., Hawn, T.R., Ozinsky, A., Pham, U., Akira, S., Aderem, A., and Liles, W.C. (2003). Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect. Immun. 71: 5280–5286.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, R. and Burnie, J. (2001). Antifungal antibodies: A new approach to the treatment of systemic candidiasis. Curr. Opin. Investig. Drugs 2: 472–476.

    CAS  PubMed  Google Scholar 

  • McKnight, A. and Gordon, S. (2000). Forum in Immunology: Innate recognition systems. Microbes Infect. 2: 239–336.

    Article  Google Scholar 

  • Medzhitov, R. and Janeway, C.A. Jr. (1997). Innate immunity: The virtues of a nonclonal system of recognition. Cell 91: 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Mencacci, A., Bacci, A., Cenci, E., Montagnoli, C., Fiorucci, S., Casagrande, A., Flavell, R.A., Bistoni, F., and Romani, L. (2000). Interleukin-18 restores detective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect. Immun. 68: 5126–5131.

    Article  CAS  PubMed  Google Scholar 

  • Mencacci, A., Cenci, E., Bacci, A., Bistoni, F., and Romani, L. (2000). Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. J. Infect. Dis. 181: 686–694.

    Article  CAS  PubMed  Google Scholar 

  • Mencacci, A., Perruccio, K., Bacci, A., Cenci, E., Benedetti, R., Martelli, M. F., Bistoni, F., Coffman, R., Velardi, A., and Romani, L. (2001). Defective antifungal T-helper 1 (TH1) immunity a murine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood 97: 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  • Mencacci, A., Montagnoli, C., Bacci, A., Cenci, E., Pitzurra, L., Spreca, A., Kopf, M., Sharpe, A.H., and Romani, L. (2002). CD80+Gr-1+ myeloid cells inhibit development of antifungal TH1 immunity in mice with candidiasis. J. Immunol. 169: 3180–3190.

    CAS  PubMed  Google Scholar 

  • Millar, D.G., Garza, K.M., Odermatt, B., Elford, A.R., Ono, N., Li, Z., and Ohashi, P.S. (2003). HPS70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9: 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M.G. and Johnson, A.D. (2002). White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293–302.

    CAS  PubMed  Google Scholar 

  • Montagnoli, C., Bacci, A., Bozza, S., Gaziano, R., Mosci, P., Sharpe, H.A., and Romani, L. (2002). B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory protective immunity to Candida albicans. J. Immunol. 169: 6298–6308.

    CAS  PubMed  Google Scholar 

  • Montagnoli, C., Bozza, S., Bacci, A., Gaziano, R., Mosci, P., Morschhauser, J., Pitzurra, L., Kopf, M., Cutler, J., and Romani, L. (2003). A role for antibodies in the generation of memory antifungal immunity. Eur. J. Immunol. 33: 1193–1204.

    Article  CAS  PubMed  Google Scholar 

  • Mullick, A., Elias, M., Harakidas, P., Marcil, A., Whiteway, M., Ge, B., Hudson, T.J., Caron, A.W., Bouget, L., Picard, S., Jovcevski, O., Massie, B., and Thomas, D.Y. (2004). Gene expression in HL60 granulocytoid and human polymorphonuclear leukocytes exposed to Candida albicans. Infect. Immun. 72: 414–429.

    CAS  PubMed  Google Scholar 

  • Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog, M., Gordon, P., et al. (2002). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell. 13: 3452–3465.

    Article  CAS  PubMed  Google Scholar 

  • Newman, S.L. and Holly, A. (2001). Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect. Immun. 69: 6813–6822.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, L.A., Fitzgerald, K.A., and Bowie, A.G. (2003). The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24: 286–290.

    PubMed  Google Scholar 

  • Netea, M.G., Stuyt, R. J., Kim, S.H., Van der Meer, J.W., Kullberg, B.J., and Dinarello, C.A. (2002a). The role of endogenous interleukin (IL)-18, IL-12, IL-1β, and tumor necrosis factor-α in the production of interferon-γ induced by Candida albicans in human whole-blood cultures. J. Infect. Dis. 185: 963–970.

    CAS  PubMed  Google Scholar 

  • Netea, M.G., Van Der Graaf, C.A., Vonk, A.G., Verschueren, I, Van Der Meer, J.W., and Kullberg, B.J. (2002b). The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185: 1483–1489.

    CAS  PubMed  Google Scholar 

  • Netea, M.G., vonk, A.G., van den Hoven, M., Verschueren, I., Joosten, L.A., van Krieken, J.H., van den Berg., Van deer Meer, J.W., and Kullberg, B.J. (2003). Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur. J. Immunol. 33: 3409–3417.

    Article  CAS  PubMed  Google Scholar 

  • Pasare, C. and Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299: 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Polonelli, L., Magliani, W., Conti, S., Bracci, L., Lozzi, L., Neri, P., Adriani, D., De Bernardis, F., and Cassone, A. (2003). Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis. Infect. Immun. 71: 6205–6212.

    Article  CAS  PubMed  Google Scholar 

  • Poynton, H.C. (1997). Immune modulation by cytokines in the treatment of opportunistic infections. Curr. Opin. Infect. Dis. 10: 275–280.

    Google Scholar 

  • Poynton, C.H., Barnes, R.A., and Rees, J. (1998). Interferon γ and granulocyte-macrophage colony-stimulating factor for the treatment of hepatosplenic candidosis in patients with acute leukemia. Clin. Inf. Dis. 26: 239–240.

    CAS  Google Scholar 

  • Puccetti, P., Romani, L., and Bistoni, F. (1995). A TH1-TH2-like switch in candidiasis: New perspectives for therapy. Trends Microbiol. 3: 237–240.

    Article  CAS  PubMed  Google Scholar 

  • Raveh, D., Kruskal, B.A., Farland, J., and Ezekowitz, R.A. (1998). Th1 and Th2 cytokines cooperate to stimulate mannose-receptor-mediated phagocytosis. J. Leukoc. Biol. 64: 108–113.

    CAS  PubMed  Google Scholar 

  • Read, S. and Powrie, F. (2001). CD4+ regulatory T cells. Curr. Opin. Immunol. 13: 644–649.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Adrian, L.J., Grazziutti, M.L., Rex, H.J., and Anaissie, E.J. (1998). The potential role of cytokine for fungal infections in patients with cancer: Is recovery from neutropenia all that is needed? Clin. Infect. Dis. 26: 1270–1278.

    CAS  PubMed  Google Scholar 

  • Roeder, A., Kirscning, C.J., Rupec, R.A., Schaller, M., and Korting, H.C. (2004). Toll-like receptors and innate antifungal responses. Trends Microbiol. 12: 44–49.

    Article  CAS  PubMed  Google Scholar 

  • Roilides, E., Sein, T., Schaufele, R., Chanock, S.J., and Walsh, T.J. (1998). Increased serum concentrations of interleukin-10 in patients with hepatosplenic candidiasis. J. Infect. Dis. 178: 589–592.

    Article  CAS  PubMed  Google Scholar 

  • Roilides, E., Lamaignere, C.G., and Farmaki, E. (2002). Cytokines in immunodeficient patients with invasive fungal infections: An emerging therapy. Int. J. Infect. Dis. 6: 154–163.

    Article  PubMed  Google Scholar 

  • Romagnoli, G., Nisini, R., Chiani, P., Mariotti, S., Teloni, R., Cassone, A., and Torosantucci, A. (2004). The interaction of human dendritic cells with yeasts and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J. Leukoc. Biol. 75: 117–126.

    CAS  PubMed  Google Scholar 

  • Romani, L. (2004). Immunity to fungal infections. Nat. Rev. Immunol. 4: 11–23.

    Article  CAS  Google Scholar 

  • Romani, L. (2002). Innate immunity against fungal pathogens. In R.A. Calderone and L.R. Cihlar (eds), Fungal Pathogenesis. Principles and Clinical Applications. Marcel Dekker, New York, pp. 401–432.

    Google Scholar 

  • Romani, L. (2003). Cytokines in the innate and adaptive immunity to Candida albicans. In M. Kotb and T. Calandra (eds), Cytokines and Chemokines in Infectious Diseases Handbook. Humana Press, Totowa, NJ, pp. 227–241.

    Google Scholar 

  • Romani, L. (1999). Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol. 2: 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Romani, L., Montagnoli, C., Bozza, S., Perruccio, K., Spreca, A., Allavena, P., Verbeek, S., Calderone, R.A., Bistoni, F., and Puccetti, P. (2004). The exploitation of distinct recognition receptors in dendritic cells determines the full range of host’s immune relationships with Candida albicans. Int. Immunol. 16: 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Romani, L., Bistoni, F., and Puccetti, P. (2003). Adaptation of Candida albicans to the host environment: The role of morphogenesis in virulence and survival in mammalian hosts. Curr. Opin. Microbiol. 6: 338–343.

    Article  PubMed  Google Scholar 

  • Romani, L., Bistoni, F., and Puccetti, P. (2002). Fungi, dendritic cells and receptors: A host perspective of fungal virulence. Trends Microbiol. 10: 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Romani, L., Mencacci, A., Cenci, E., Spaccapelo, R., Toniatti, C., Puccetti, P., Bistoni, F., and Poli, V. (1996). Impaired neutrophil response and CD4+ T helper cell 1 development in inter-leukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183: 1345–1355.

    Article  CAS  PubMed  Google Scholar 

  • Rooney, P.J. and Klein, B.S. (2002). Linking fungal morphogenesis with virulence. Cell. Microbiol. 4: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, A.A., Johnston D.A., Myers, C., Edwards, J.E. Jr., Mitchell, A.P., and Miller, S.G. (2004). Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect. Immun. 72: 598–601.

    Article  CAS  PubMed  Google Scholar 

  • Schroppel, K., Kryk, M., Herrmann, M., Leberer, E., Rollinghoff, M., and Bogdan, C. (2001). Suppression of type 2 NO-synthase activity in macrophages by Candida albicans. Int. Med. Microbiol. 290: 659–668.

    CAS  Google Scholar 

  • Soll, D.R. (2002). Candida commensalism and virulence: The evolution of phenotypic plasticity. Acta Trop. 81: 101–110.

    PubMed  Google Scholar 

  • Spellberg, B., Johnston, D., Phan, Q.T., Edwards, J.E., French, S.W., Ibrahim, A.S., and Filler, S.G. (2003). Parenchymal organ, and not splenic, immunity correlates with host survival during disseminated candidiasis. Infect. Immun. 71: 5756–5764.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, R.M. and Pope, M. (2002). Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest. 109: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, D.A. (1998). Combination immunotherapy and antifungal chemotherapy. Clin. Infect. Dis. 26: 1266–1269.

    CAS  PubMed  Google Scholar 

  • Stevens, D.A., Walsh, T.J., Bistoni, F., Cenci, E., Clemons, K.V., Del Sero, G., Fè d’Ostiani, C., Kullberg, B.J., Mencacci, A., Roilides, E., and Romani, L. (1998). Cytokines and mycoses. Med. Mycol. 36(S1): 174–182.

    CAS  PubMed  Google Scholar 

  • Stuyt, R.J., Netea, M.G., Verschueren, I., Fantuzzi, G., Dinarello, C.A., Van Der Meer, J.W., and Kullberg, B.J. (2002). Role of inter-leukin-18 in host defense against disseminated Candida albicans infection. Infect. Immun. 70: 3284–3286.

    Article  CAS  PubMed  Google Scholar 

  • Tada, H., Nemoto, E., Shimauchi, H., Watanabe, T., Mikami, T., Matsumoto, T., Ohno, N., Tamura, H., Shibata, K., Akashi, S., Miyake, K., Sugawara, S., and Takada, H. (2002). Saccharomyces cerevisiae-and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46: 503–512.

    CAS  PubMed  Google Scholar 

  • Torosantucci, A., Chiani, P., De Bernardis, F., Cassone, A., Calera, J.A., and Calderone, R. (2002). Deletion of the two-component histidine kinase gene (CHK1) Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect. Immun. 70: 985–987.

    Article  CAS  PubMed  Google Scholar 

  • Torosantucci, A., Romagnoli, G., Chiani, P., Stringaro, A., Crateri, P., Mariotti, S., Teloni, R., Arancia, G., Cassone, A., and Nisini, R. (2004). Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: A novel dimorphism-dependent mechanism to escape the host’s immune response. Infect. Immun. 72: 833–843.

    Article  CAS  PubMed  Google Scholar 

  • van Spriel, A.B., van den Herik-Oudijk, I.E., van Sorge, N.M., Vile, H.A., van Strijp, J.A., and van de Winkel, J.G. (1999). Effective phagocytosis and killing of Candida albicans via targeting FcgammaRI (CD64) or FcalphaRI (CD89) on neutrophils. J. Infect. Dis. 179: 661–669.

    PubMed  Google Scholar 

  • van Spriel, A.B., Leuse, J.H.W., van Egmond, M., Dijkman, H.B.P.M., Assmann, K.J.M., Mayadas, T.N., and van de Winkel, J.G. (2001). Mac-1 (CD11b/Cd18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97: 2478–2486.

    PubMed  Google Scholar 

  • Vasquez-Torres, A. and Balish, E. (1997). Macrophages in resistance to candidiasis. Microbiol. Mol. Rev. 61: 170–192.

    Google Scholar 

  • Villamon, E., Gozalbo, D., Roig, P., O’Connor, J.E., Fradelizi, D., and Gil, M.L. (2004). Tolllike receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 6: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T.J., Hiemenz, J., and Pizzo, P.A. (1994). Evolving risk factors for invasive fungal infections-all neutropenic patients are not the same. Clin. Infect. Dis. 18: 793–798.

    CAS  PubMed  Google Scholar 

  • Wanten, G.J., Netea, M.G., Naber, T.H., Curfs, J.H., Jacobs, L.E., Verver-Jansen, T.J., and Kullberg, B.J. (2002). Parenteral administration of medium-but not long-chain lipid emulsions may increase the risk for infections by Candida albicans. Infect. Immun. 70: 6471–6474.

    Article  CAS  PubMed  Google Scholar 

  • Wellington, M., Bliss, J.M., and Haidaris, C.G. (2003). Enhanced phagocytosis of Candida species mediated by opsonization with a recombinant human antibody single-chain variable fragment. Infect. Immun. 71: 7228–7231.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, M., et al. (2003). Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301: 640–643.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Specter, S., and Friedman, H. (1993). Lipopolysaccharide restores anti-Candida albicans growth inhibition activity of polymorphonuclear neutrophils from retrovirus-immunosuppressed mice. Infect. Immun. 61: 2216–2219.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Romani, L. (2005). Innate and Adaptive Immunity to Systemic Candida albicans Infection. In: Fidel, P.L., Huffnagle, G.B. (eds) Fungal Immunology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25445-5_19

Download citation

Publish with us

Policies and ethics