Skip to main content

13. Conclusion

The work begun by John Sarvey on the biochemical processes involved in synaptic plasticity has progressed rapidly. The LTP field is now blessed with a great deal of data showing how the different phases of LTP and the synaptic weakening processes are affected by pharmacological and genetic perturbations. There is the feeling in the memory field that the cast of characters involved in LTP has been largely identified. These include second messenger cascades, kinases, phosphatases, channels, structural proteins, a vesicle delivery system, regulators of gene transcription and translation, and mediators of synaptic growth. The challenge ahead is to understand how this cast works together to make the play memorable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15. References

  • Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Abraham WC, Huggett A (1997) Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7:137–145.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CM, Nozaki N, Shigeri Y, Soderling TR (2003) CaMKII regulates cytoplasmic protein synthesis mediated by CPEB. In: Neuroscience Meeting, p 583.519. New Orleans.

    Google Scholar 

  • Barr DS, Lambert NA, Hoyt KL, Moore SD, Wilson WA (1995) Induction and reversal of long-term potentiation by low-and high-intensity theta pattern stimulation. J Neurosci 15:5402–5410.

    PubMed  CAS  Google Scholar 

  • Bartol TM, Jr., Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307.

    PubMed  CAS  Google Scholar 

  • Bhalla US (2002) Biochemical signaling networks decode temporal patterns of synaptic input. J Comput Neurosci 13:49–62.

    Article  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387.

    Article  PubMed  CAS  Google Scholar 

  • Birtoli B, Ulrich D (2004) Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci 24:4935–4940.

    Article  PubMed  CAS  Google Scholar 

  • Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)-and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Blitzer RD, Wong T, Nouranifar R, Iyengar R, Landau EM (1995) Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403–1414.

    Article  PubMed  CAS  Google Scholar 

  • Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940–1942.

    Article  PubMed  CAS  Google Scholar 

  • Cammalleri M, Lutjens R, Berton F, King AR, Simpson C, Francesconi W, Sanna PP (2003) Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc Natl Acad Sci U S A 100:14368–14373.

    Article  PubMed  CAS  Google Scholar 

  • Castellani GC, Quinlan EM, Cooper LN, Shouval HZ (2001) A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc Natl Acad Sci U S A 98:12772–12777.

    Article  PubMed  CAS  Google Scholar 

  • Chotiner JK, Khorasani H, Nairn AC, O’Dell TJ, Watson JB (2003) Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience 116:743–752.

    Article  PubMed  CAS  Google Scholar 

  • Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci.

    Google Scholar 

  • Franks KM, Bartol TM, Jr., Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348.

    PubMed  CAS  Google Scholar 

  • Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664.

    PubMed  CAS  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65.

    PubMed  CAS  Google Scholar 

  • Frey U, Matthies H, Reymann KG, Matthies H (1991) The effect of dopaminergic DI receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro. Neurosci Lett 129:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Holland LL, Wagner JJ (1998) Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. J Neurosci 18:887–894.

    PubMed  CAS  Google Scholar 

  • Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92:2446–2450.

    Article  PubMed  CAS  Google Scholar 

  • Huang YY, Nguyen PV, Abel T, Kandel ER (1996a) Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Mem 3:74–85.

    PubMed  CAS  Google Scholar 

  • Huang Y-Y, Kandel ER (1994) Recruitment of Long-lasting and Protein Kinase A-dependent Long-term Potentiation in the CA1 Region of Hippocampus Requires Repeated Tetanization. Learning & Memory 1:74–82.

    CAS  Google Scholar 

  • Huang Y-Y, Nguyen PV, Abel T, Kandel ER (1996b) Long lasting forms of synaptic potentiation in the mamalian hippocampus. Learning & Memory 3:74–85.

    CAS  Google Scholar 

  • Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973–982.

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358:667–674.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Kang-Park MH, Sarda MA, Jones KH, Moore SD, Shenolikar S, Clark S, Wilson WA (2003) Protein phosphatases mediate depotentiation induced by high-intensity theta-burst stimulation. J Neurophysiol 89:684–690.

    Article  PubMed  CAS  Google Scholar 

  • Krug M, Lossner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13:39–42.

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959.

    Article  PubMed  CAS  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574–9578.

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Schulman H, H. C (2002) The molecular basis of CaMKII function in synaptic and behavioral memory. In: Nat Rev Neurosci, pp 175–190.

    Google Scholar 

  • Matthies H, Reymann KG (1993) Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4:712–714.

    PubMed  CAS  Google Scholar 

  • Miller P, Lisman JE, Zhabotinsky A, Wang X-J (2004) in preparation.

    Google Scholar 

  • Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:507–519.

    Article  PubMed  CAS  Google Scholar 

  • Mockett B, Coussens C, Abraham WC (2002) NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. Eur J Neurosci 15:1819–1826.

    Article  PubMed  Google Scholar 

  • Moody TD, Carlisle HJ, O’Dell TJ (1999) A nitric oxide-independent and beta-adrenergic receptor-sensitive form of metaplasticity limits theta-frequency stimulation-induced LTP in the hippocampal CA1 region. Learn Mem 6:619–633.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen PV, Abel T, Kandel ER (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265:1104–1107.

    PubMed  CAS  Google Scholar 

  • O’Dell T, Kandel E (1994) Low-frequency stimulation erases LTP through an NMDA Receptor-mediated Activation on Protein Phosphatases. Learning and Memory 1:129–139.

    PubMed  CAS  Google Scholar 

  • Okamoto H, Ichikawa K (2000) Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II. Biol Cybern 82:35–47.

    Article  PubMed  CAS  Google Scholar 

  • Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91:1955–1962.

    Article  PubMed  CAS  Google Scholar 

  • Otmakhova NA, Lisman JE (1998) D1/D5 Dopamine Receptors Inhibit Depotentiation at CA1 Synapses via cAMP-Dependent Mechanism. J Neurosci 18:1270–1279.

    PubMed  CAS  Google Scholar 

  • Otmakhova NA, Otmakhov N, Mortenson LH, Lisman JE (2000) Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci 20:4446–4451.

    PubMed  CAS  Google Scholar 

  • Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H, Drake C, Kandel ER (2001) Some Forms of cAMP-Mediated Long-Lasting Potentiation Are Associated with Release of BDNF and Nuclear Translocation of Phospho-MAP Kinase. Neuron 32:123–140.

    Article  PubMed  CAS  Google Scholar 

  • Raghavachari S, Lisman JE (2004a) Properties of Quantal Transmission at CA1 Synapses. J Neurophysiol.

    Google Scholar 

  • Raghavachari S, Lisman JE (2004b) Properties of Quantal Transmission at CA1 Synapses. J Neurophysiol April 28.

    Google Scholar 

  • Raymond CR, Thompson VL, Tate WP, Abraham WC (2000) Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J Neurosci 20:969–976.

    PubMed  CAS  Google Scholar 

  • Roberson ED, English JD, Sweatt JD (1996) A biochemist’s view of long-term potentiation. Learn Mem 3:1–24.

    PubMed  CAS  Google Scholar 

  • Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 19:4337–4348.

    PubMed  CAS  Google Scholar 

  • Sarvey JM, Burgard EC, Decker G (1989) Long-term potentiation: studies in the hippocampal slice. J Neurosci Methods 28:109–124.

    Article  PubMed  CAS  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831–10836.

    Article  PubMed  CAS  Google Scholar 

  • Stanton PK, Sarvey JM (1984) Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci 4:3080–3088.

    PubMed  CAS  Google Scholar 

  • Staubli U, Chun D (1996) Proactive and retroactive effects on LTP produced by theta pulse stimulation: mechanisms and characteristics of LTP reversal in vitro. Learning and Memory 3:96–105.

    PubMed  CAS  Google Scholar 

  • Stiles JR, Van Helden D, Bartol TM, Jr., Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci U S A 93:5747–5752.

    Article  PubMed  CAS  Google Scholar 

  • Wagner JJ, Alger BE (1995) GABAergic and developmental influences on homosynaptic LTD and depotentiation in rat hippocampus. J Neurosci 15:1577–1586.

    PubMed  CAS  Google Scholar 

  • Wexler EM, Stanton PK (1993) Priming of homosynaptic long-term depression in hippocampus by previous synaptic activity. Neuroreport 4:591–594.

    PubMed  CAS  Google Scholar 

  • Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcincurin. Cell 92:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Woo NH, Abel T, Nguyen PV (2002) Genetic and pharmacological demonstration of a role for cyclic AMP-dependent protein kinase-mediated suppression of protein phosphatases in gating the expression of late LTP. Eur J Neurosci 16:1871–1876.

    Article  PubMed  Google Scholar 

  • Yang HW, Lin YW, Yen CD, Min MY (2002) Change in bi-directional plasticity at CA1 synapses in hippocampal slices taken from 6-hydroxydopamine-treated rats: the role of endogenous norepinephrine. Eur J Neurosci 16:1117–1128.

    Article  PubMed  Google Scholar 

  • Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787.

    PubMed  CAS  Google Scholar 

  • Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16.

    Article  PubMed  CAS  Google Scholar 

  • Zhabotinsky AM (2000) Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Biophys J 79:2211–2221.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lisman, J.E., Raghavachari, S., Otmakhov, N., Otmakhova, N.A. (2005). The Phases of LTP: The New Complexities. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_20

Download citation

Publish with us

Policies and ethics