Skip to main content

How Lipidomic Approaches Will Benefit the Pharmaceutical Industry

  • Chapter
Metabolome Analyses: Strategies for Systems Biology
  • 1092 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams A. Metabolomics: small-molecule ’omics. The Scientist, 17: 38 (2003).

    Google Scholar 

  • Amer RK, Pace-Asciak CR, Mills LR. A lipoxygenase product, hepoxilin A(3), enhances nerve growth factor-dependent neurite regeneration post-axotomy in rat superior cervical ganglion neurons in vitro. Neuroscience, 116: 935–946 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Bannenberg GL et al. Exogenous pathogen and plant 15-lipoxygenase initiate endogenous lipoxin A4 biosynthesis. J. Exp. Med., 199: 515–523 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bender F et al. Caveolae and caveolae-like membrane domains in cellular signaling and disease: identification of downstream targets for the tumor suppressor protein caveolin-1. Biol. Res., 35: 151–167 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Berger A et al. Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis., 1: 2 (2002a).

    Article  PubMed  Google Scholar 

  • Berger A et al. Unraveling lipid metabolism with microarrays: effects of arachidonate and docosahexaenoate acid on murine hepatic and hippocampal gene expression. Genome Biol 3: PREPRINT0004, May (2002b)

    Google Scholar 

  • Berger A, Roberts MA. Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic gene expression. In Berger A and Roberts MA (eds), Unraveling lipid metabolism with microarrays and other “omic” approaches, Marcel Dekker, NY, 2004.

    Google Scholar 

  • Boeglin WE, Kim RB, Brash AR. A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc. Natl. Acad. Sci. USA, 95: 6744–6749 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Boucher A et al. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J. Biol. Chem., 279: 27263–27271 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bowcock AM et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum. Mol. Genet., 10: 1793–1805 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bowers R et al. Oxidative stress in severe pulmonary hypertension. Am. J. Respir. Crit. Care Med., 169: 764–769 (2004).

    Article  PubMed  Google Scholar 

  • Brindle JT et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med., 8: 1439–1445 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Burstein SH et al. Regulation of anandamide tissue levels by N-arachidonylglycine. Biochem. Pharmacol., 64: 1147–1150 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Capdevila JH, Nakagawa K, Holla V. The CYP P450 arachidonate monooxygenases: enzymatic relays for the control of kidney function and blood pressure. Adv. Exp. Med. Biol., 525: 39–46 (2003).

    PubMed  CAS  Google Scholar 

  • Cheng H, Han X. The effects of ApoE on the lipidome of mouse peripheral nervous system: A two-dimensional electrospray ionization mass spectrometric study. Abstract 193, ASMS 2004 Meeting, Nashville, TN, May 23–27, (2004).

    Google Scholar 

  • Chu CJ et al. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem., 278: 13633–13639 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Coen M et al. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem. Res. Toxicol., 16: 295–303 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Coen M et al. Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J. Pharm. Biomed. Anal., 35: 93–105 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Colarow L et al. Characterization and biological activity of gangliosides in buffalo milk. Biochim. Biophys. Acta, 1631: 94–106 (2003).

    PubMed  CAS  Google Scholar 

  • Cowart LA et al. The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J. Biol. Chem., 277: 35105–35112 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Daleke DL. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res., 44: 233–242 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Deighton N et al. A metabolomics study of Plasmodium falciparum infection of red blood cells in the absence and presence of antimalarials. Abstract 257, ASMS 2004 Meeting, May 23–27, (2004).

    Google Scholar 

  • Di Gennaro A et al. Cysteinyl-leukotrienes receptor activation in brain inflammatory reactions and cerebral edema formation: a role for transcellular biosynthesis of cysteinyl-leukotrienes. FASEB J., 18: 842–844 (2004).

    PubMed  Google Scholar 

  • Dufour F et al. Abnormal cholesterol processing in Alzheimer’s disease patients fibroblasts. Neurobiol. Lipids, 1: 34–45 (2003).

    Google Scholar 

  • Ejsing CS et al. Shotgun Lipidomics: high throughput profiling of the molecular composition of phospholipids. Oral presentation, ASMS 2004 Meeting, Nashville, TN, May 23–27, (2004).

    Google Scholar 

  • Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol., 48: 155–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fisher-Wilson J. Long-suffering lipids gain respect: Technical advances and enhanced understanding of lipid biology fuel a trend toward lipidomics. The Scientist, 17: 5 (2003).

    Google Scholar 

  • Forrester JS et al. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol., 65: 813–821 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA, 100: 5813–5818 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Gascard P et al. Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochim. Biophys. Acta, 1069: 27–36 (1991).

    PubMed  CAS  Google Scholar 

  • Godin JP et al. [2H/H] Isotope ratio analyses of [2H5]cholesterol using high-temperature conversion elemental analyser isotope-ratio mass spectrometry: determination of cholesterol absorption in normocholesterolemic volunteers. Rapid Commun. Mass Spectrom., 18: 325–330 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gremaud G et al. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotoperatio mass spectrometry. Rapid Commun. Mass Spectrom., 15: 1207–1213 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Griffiths WJ. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom. Rev., 22: 81–152 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Gronert K et al. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage. J. Immunol., 172: 1856–1861 (2004).

    PubMed  CAS  Google Scholar 

  • Ham BM et al. Identification, quantification and comparison of major nonpolar lipids in normal and dry eye tears by ES-MS/MS. Oral presentation, ASMS 2004 Meeting, Nashville, TN, May 23–27, (2004).

    Google Scholar 

  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res., 44: 1071–1079 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hanash S. Disease proteomics. Nature, 422: 226–232 (2003).

    Article  PubMed  CAS  Google Scholar 

  • He F. Measuring metabolic responses of hepatocytes to drug treatment using FTMS. Presented at Cambridge Healthtech Institute’s 2nd Annual Metabolic Profiling: Pathways in Discovery, Durham, North Carolina, Dec 2–3, 2002, (2002).

    Google Scholar 

  • Hong MY et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis, 23: 1919–1925 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hong S et al. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem., 278: 14677–14687 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Huang SM et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci USA, 99: 8400–8405 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hughey CA, Rodgers RP, Marshall AG. Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem., 74: 4145–4149 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ivanova PT et al. LIPID Arrays: New tools in the understanding of membrane dynamics and lipid signaling. Mol. Interv., 4: 86–96 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW. Deuterium labeled dicarboxylic acylcarnitines for the differentiation of fatty acid oxidation disorders by tandem mass spectrometry. Abstract 44, ASMS 2004 Meeting, Nashville, TN, May 23–27, (2004).

    Google Scholar 

  • Kaddurah-Daouk R et al. Bioanalytical advances for metabolomics and metabolic profiling. PharmaGenomics, Jan: 46–52 (2004).

    Google Scholar 

  • Lindon JC et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol., 187: 137–146 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol., 21: 255–261 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mims D, Hercules D. Quantification of bile acids directly from urine by MALDI-TOF-MS. Anal. Bioanal. Chem., 375: 609–616 (2003).

    PubMed  CAS  Google Scholar 

  • Mortishire-Smith RJ et al. Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chem. Res. Toxicol., 17: 165–173 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Mutch DM et al. An integrative metabolism approach identifies stearoyl-CoA desaturase as a target for an arachidonate-enriched diet. FASEB J. (In press).

    Google Scholar 

  • Parton RG. Caveolae—from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell. Biol., 4: 162–167 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Perwaiz S et al. Rapid and improved method for the determination of bile acids in human feces using MS. Lipids, 37: 1093–1100 (2002).

    PubMed  CAS  Google Scholar 

  • Pettus BJ et al. Quantitative measurement of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure ionization mass spectrometry. Rapid Commun. Mass Spectrom., 18: 577–583 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Phelps TJ, Palumbo AV, Beliaev AS. Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol., 13: 20–24 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ et al. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry (Mosc), 41: 2075–2088 (2002).

    Article  CAS  Google Scholar 

  • Pouteau E et al. Determination of cholesterol absorption in humans: from radiolabel to stable isotope studies. Isotopes Environ. Health Stud., 39: 247–257 (2003a).

    Article  PubMed  CAS  Google Scholar 

  • Pouteau EB et al. Non-esterified plant sterols solubilized in low fat milks inhibit cholesterol absorption—a stable isotope double-blind crossover study. Eur. J. Nutr., 42: 154–164 (2003b).

    PubMed  CAS  Google Scholar 

  • Pulfer MK, Murphy RC. Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J. Biol. Chem., 279: 26331–26338 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Richelle M et al. Both free and esterified plant sterols decrease cholesterol absorption and the bioavailability of βcarotene and α-tocopherol, in normocholesterolemic humans. Am. J. Clin. Nutr., 80: 171–177 (2004).

    PubMed  CAS  Google Scholar 

  • Schnitzer JE. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo,. Adv. Drug Deliv. Rev., 49: 265–280 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN. Clues for new therapeutics in osteoporosis. N. Engl. J. Med., 350: 1902–1903 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid Mediat., 68–69: 433–455 (2002).

    Article  PubMed  Google Scholar 

  • Serhan CN, Chiang N. Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entree for resoleomics. Rheum. Dis. Clin. North Am., 30: 69–95 (2004).

    Article  PubMed  Google Scholar 

  • Serhan CN et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med., 196: 1025–1037 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sommerer D et al. Analysis of the phospholipid composition of bronchoalveolar lavage (BAL) fluid from man and minipig by MALDI-TOF mass spectrometry in combination with TLC. J. Pharm. Biomed. Anal., 35: 199–206 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Sullards MC et al. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell. Mol. Biol,. 49: 789–797 (2003).

    PubMed  CAS  Google Scholar 

  • Sumner SCJ, Liu G. Metabolomics holds key to intelligent discovery efforts. Genetic Engineering News, 22: 32–33 (2002).

    Google Scholar 

  • Varnau M, Singhania A. Dynamic metabolomics industry emerges. Genetic Engineering News, 22: 15–17; 93 (2002).

    Google Scholar 

  • Walker JM, Huang SM. Endocannabinoids in pain modulation. Prostaglandins Leukot Essent Fatty Acids, 66: 235–242 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Watkins SM. Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr. Opin. Drug Discov. Devel., 7: 112–117 (2004).

    PubMed  CAS  Google Scholar 

  • Watkins SM, German JB. Metabolomics and biochemical profiling in drug discovery and development. Curr. Opin. Mol. Ther., 4: 224–228 (2002).

    PubMed  CAS  Google Scholar 

  • Weckwerth W, Fiehn O. Can we discover novel pathways using metabolomic analysis? Curr. Opin. Biotechnol., 13: 156–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O. Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their coregulation in biochemical networks. Proteomics, 4: 78–83 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Wang X. Lipidomics. Inform., 14: 607–608 (2003).

    Google Scholar 

  • Wen Z, Kim H-Y. Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J. Neurochem., 89: 1368–1377 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 3: 267–275 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yang W. Lipomics: mastering metabolites. Biocentury, The Bernstein report on BioBusiness A13 (2003).

    Google Scholar 

  • Zarini S, Murphy RC. Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage. J. Biol. Chem., 278: 11190–11196 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ziboh VA et al. Biological significance of essential fatty acids/prostanoids/lipoxygenase-derived monohydroxy fatty acids in the skin. Arch. Pharm. Res., 25: 747–758 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Berger, A. (2005). How Lipidomic Approaches Will Benefit the Pharmaceutical Industry. In: Vaidyanathan, S., Harrigan, G.G., Goodacre, R. (eds) Metabolome Analyses: Strategies for Systems Biology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25240-1_20

Download citation

Publish with us

Policies and ethics