Skip to main content

From Nanosize Silica Spheres to Three-Dimensional Colloidal Crystals

  • Chapter
Ordered Porous Nanostructures and Applications

Part of the book series: Nanostructure Science and Technology ((NST))

6.6. Concluding Remarks

Although a variety of preparation methods have been developed, the creation of high quality periodic 3D porous structures, preferably over large areas, uniformly and at low cost, is still a challenging problem. Problems associated with template assisted fabrication of porous structures include preparation of a high quality template, complete filling of the voids in the template and the minimization of shrinkage upon template removal by heating or etching. Since any of these factors can influence the final quality of the porous structure, all these requirements must be fulfilled at the same time.

Devices based on porous titania such as photo-voltaic cells, gas sensors or electrochromic displays have attracted considerable attention in recent years. The efficiency of such devices is enhanced by a precise control of pore size and distribution. Sol-gel fabrication routes offer both low cost and great flexibility in the fabrication of periodic porous 3D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Matijevic, Monodispersed metal (hydrous) oxides—a fascinating field of colloid sciences, Acc. Chem.Res. 14, 22–29 (1981).

    Article  CAS  Google Scholar 

  2. E. Matijevic, Monodispersed colloids: art and science, Langmuir 2, 12–20 (1986).

    Article  CAS  Google Scholar 

  3. C. Feldmann, Preparation of nanoscale pigment particles, Adv. Mater. 13, 1301–1303 (2001).

    Article  CAS  Google Scholar 

  4. C.J. Brinker, Sol-Gel-Science, Academic Press, New York, 1990.

    Google Scholar 

  5. H.E. Bergna (Ed.), Adv. Chem. Series: The Colloid Chemistry of Silica, Vol. 234, American Chemical Society, Washington, DC, 1994.

    Google Scholar 

  6. W. Stoeber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26, 62 (1968).

    Article  CAS  Google Scholar 

  7. G. De, B. Karmakar and D. Ganguli, Controlled growth of monodisperse silica spheres in the micron size range, J. Mater. Chem. 10, 2289–2293 (2000).

    Article  CAS  Google Scholar 

  8. H. Winkler, Synthese und charakterisierung photonischer bandlückenmaterialien, Diploma thesis, Paderborn, Germany, 2001.

    Google Scholar 

  9. M. Dresselhaus, G. Dresselhaus and P. Avouris, Carbon Nanotubes, Springer, Berlin, 2000.

    Google Scholar 

  10. K. Shelimov and M. Moskovits, Composite nanostructures based on template-grown boron nitride nanotubules, Chem. Mater. 12, 250 (2000).

    Article  CAS  Google Scholar 

  11. O. Lourie, C. Jones, B. Bartlett, P. Gibbons, R. Ruoff and W. Buhro, CVD growth of boron nitride nanotubes, Chem. Mater. 12, 1808 (2000).

    Article  CAS  Google Scholar 

  12. R. Ma, Y. Bando, T. Sato and K. Kurashima, Growth, morphology, and structure of boron nitride nanotubes, Chem Mater. 13, 2965 (2001).

    Article  CAS  Google Scholar 

  13. Z. Zhang, B. Wei, J. Ward, R. Vajtai, G. Ramanath and P. Ajayan, Select pathways to carbon nanotube film growth, Adv. Mater. 13, 1767 (2001).

    Article  CAS  Google Scholar 

  14. Y. Sui, D. Acosta, J. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Cui, J. Flores and M. Saniger, Structure, thermal stability and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template, J. Phys. Chem. B 105, 1523 (2001).

    Article  CAS  Google Scholar 

  15. A. Peigney, P. Coquay, E. Flahaut, R. Vandenberghe, E. De Grave and C. Laurent, A study of the formation of single-and double-walled carbon nanotubes by a CVD method, J. Phys. Chem. B 105, 9699 (2001).

    Article  CAS  Google Scholar 

  16. A. Morales and C. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  17. J. Holmes, K. Johnston, R. Doty and B. Korgel, Control of the thickness and orientation of solution-grown silicon nanowires, Science 287, 1471 (2000).

    Article  CAS  Google Scholar 

  18. D. Al-Mawlawi, C.Z. Liu and M. Moskovits, Nanowires formed in anodic oxide nanotemplates, J. Mater. Res. 9, 1014 (1994).

    CAS  Google Scholar 

  19. J.C. Hulteen and C.R. Martin, A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997).

    Article  CAS  Google Scholar 

  20. G. Che, B. Lakshmi, C. Martin, E. Fisher and R. Ruoff, Chemical vapor deposition (CVD)-based synthesis of carbon nanotubes and nanofibers using a template method, Chem. Mater. 10, 260 (1998).

    Article  CAS  Google Scholar 

  21. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi and A. Fujishima, Synthesis of well-aligned diamond nanocylinders, Adv. Mater. 13, 247 (2001).

    Article  CAS  Google Scholar 

  22. L. Cao, Z. Zhang, L. Sun, C. Gao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang and W. Wang, Well-aligned boron nanowire arrays, Adv. Mater. 13, 1701–1704 (2001).

    Article  CAS  Google Scholar 

  23. A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100, 13226–13239 (1996).

    Article  CAS  Google Scholar 

  24. C. Wang, M. Shim and P. Guyot-Sionnest, Electrochromic nanocrystal quantum dots, Science 291, 2390 (2001).

    Article  CAS  Google Scholar 

  25. M.J. Bruchez, M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  26. Y. Vlasov, X. Bo, J. Sturm and D. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 2425 (2001).

    Article  Google Scholar 

  27. S.A. Johnson, P.J. Ollivier and T.E. Mallouk, Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science 283(12), 963–965 (1999).

    Article  CAS  Google Scholar 

  28. O.D. Velev and E.W. Kaler, Structured porous materials via colloidal crystal templating: from inorganic oxides to metals, Adv. Mater. 12(7), 531–534 (2000).

    Article  CAS  Google Scholar 

  29. S. Nishimura, A. Shishido, N. Abrams and T.E. Mallouka, Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas, Appl. Phys. Lett. 81(24), 4532–4534 (2002).

    Article  CAS  Google Scholar 

  30. O.D. Velev and A.M. Lenhoff, Colloidal crystals as templates for porous materials, Curr. Opin. Colloid Interface Sci. 5, 56–63 (2000).

    Article  CAS  Google Scholar 

  31. S. Polarza and B. Smarslya, Nanoporous materials, J. Nanosci. Nanotechnol. 2, 581–612 (2002).

    Article  CAS  Google Scholar 

  32. G.H. Bogush, M.A. Tracy and C.F. Zukoski, Preparation of monodisperse silica particles: control of size and mass fraction, J. Non-Cryst. Solids 104, 95 (1988).

    Article  CAS  Google Scholar 

  33. A. Burneau and B. Humbert, Aggregative growth of silica from an alkoxysilane in a concentrated solution of ammonia, Colloids Surf. A 75, 111 (1993).

    Article  CAS  Google Scholar 

  34. H. Giesche, Synthesis of monodispersed silica powders: I. Particle properties and reaction kinetics, J. Eur. Ceram. Soc. 14, 189 (1994).

    Article  CAS  Google Scholar 

  35. H. Giesche, Synthesis of monodispersed silica powders: II. Controlled growth reaction and continuous production process, J. Eur. Ceram. Soc. 14, 205 (1994).

    Article  CAS  Google Scholar 

  36. F. Candau and R.H. Ottewill, An Introduction to Polymer Colloids, Kluwer, Dordrecht, the Netherlands, 1990.

    Google Scholar 

  37. J. Ugelstad, M.S. Elaasser and J. Vanderhoff, The acid decomposition of methylol melamines and methoxymethyl melamines, J. Polym. Sci. Part C: Polym. Lett. 11, 503–513 (1973).

    CAS  Google Scholar 

  38. J.W. Goodwin, J. Hearn, C.C. Ho and R.H. Ottewill, Preparation and characterization of monodisperse polystyrene latexes: III. Preparation without added surface active agents, Colloid Polym. Sci. 252, 464 (1974).

    Article  CAS  Google Scholar 

  39. L. Antl, J.W. Goodwin, R.D. Hill, R.H. Ottewill, S.M. Owens, S. Papworth and J.A. Waters, The preparation of poly(methyl methacrylate) lattices in non-aqueous media, Colloids Surf. 17, 67 (1986).

    Article  CAS  Google Scholar 

  40. C.M. Tseng, Y.Y. Lu, M.S. El Aasser and J.W. Vanderhoff, Uniform polymer particles by dispersion polymerization in alcohol, J. Polym. Sci., Polym. Chem. 24, 2995 (1986).

    Article  CAS  Google Scholar 

  41. G.T.D. Shouldice, G.A. Vandezande and A. Rudin, Practical aspects of the emulsifier-free emulsion polymerization of styrene, Eur. Polym. J. 30, 179 (1994).

    Article  CAS  Google Scholar 

  42. C.E. Reese, C.D. Guerrero, J.M. Weissman, K. Lee and S.A. Asher, Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals, J. Colloid Interface Sci. 232, 76 (2000).

    Article  CAS  Google Scholar 

  43. C. Feldmann and H.-O. Jungk, Polyol-vermittelte Präparation nanoskaliger Oxidpartikel, Angew. Chemie 113, 372–374 (2001).

    Article  Google Scholar 

  44. C.R. Silva and C. Airoldi, Acid and base catalysts in the hybrid silica sol-gel process, J. Coll. Interf. Sci. 195, 381–387 (1997).

    Article  CAS  Google Scholar 

  45. A. van Blaaderen and A. Vrij, Synthesis and characterization of monodisperse colloidal organo-silica spheres, J. Colloid Interface Sci. 156, 1–18 (1993).

    Article  Google Scholar 

  46. A. van Blaaderen and A.P.M. Kentgens, Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxisilanes, J. Non-Cryst. Solids 149, 161–178 (1992).

    Article  Google Scholar 

  47. T. Matsoukas and E. Gulari, Monomer-addition growth with a slow initiation step: a growth model for silica particles from alkoxides, J. Colloid Interface Sci. 132, 13–21 (1989).

    Article  CAS  Google Scholar 

  48. T. Matsoukas and E. Gulari, Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of TEOS, J. Colloid Interface Sci. 124, 252–261 (1988).

    Article  CAS  Google Scholar 

  49. G.H. Bogush and C.F. Zukoski, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides, IV, J. Colloid Interface Sci. 142, 1–18 (1991).

    Article  CAS  Google Scholar 

  50. T. Okubo, K. Kobayashi, A. Kuno and A. Tsuchida, Kinetic study of the formation reaction of colloidal silica spheres in microgravity using aircraft, Colloid Polym. Sci. 277, 483–487 (1999).

    Article  CAS  Google Scholar 

  51. J.K. Bailey and M.L. Mecartney, Formation of colloidal silica particles from alkoxides, Colloids Surf. 63, 131–138 (1992).

    Article  Google Scholar 

  52. S.L. Chen, P. Dong and G.-H. Yang, The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane, J. Colloid Interface Sci. 189, 268–272 (1997).

    Article  CAS  Google Scholar 

  53. C.J.J. den Ouden and R.W. Thompson, The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane, J. Colloid Interface Sci. 143, 77–84 (1991).

    Article  Google Scholar 

  54. K.P. Velikov and A. van Blaaderen, Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica, Langmuir 17, 4779–4786 (2001).

    Article  CAS  Google Scholar 

  55. C. Blum, Ph.D. thesis, Paderborn, Germany, 2004.

    Google Scholar 

  56. F. Baumann, M. Schmidt, B. Deubzer, M. Geek and J. Dauth, On the preparation of organosilicon m-spheres: a polycondensation in m-emulsion, Macromolecules 27, 6102–6105 (1994).

    Article  CAS  Google Scholar 

  57. D.B. Zhang, H.M. Cheng, J.M. Ma, Y.P. Wang and X.Z. Gai Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles, J. Mater. Sci. Lett. 20, 439–440 (2001).

    Article  CAS  Google Scholar 

  58. J. Esquena, Th. F. Tadros, K. Kostarelos and C. Solans, Preparation of narrow size distribution silica particles using microemulsions, Langmuir 13, 6400–6406 (1997).

    Article  CAS  Google Scholar 

  59. R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A.E. Ostafin, Synthesis and nanoscale mesoporous silica spheres with controlled particle size, Chem. Mater. 14(11), 4721–4728 (2002).

    Article  CAS  Google Scholar 

  60. Q. Cai, F.Z. Cui, X.H. Chen, Y. Zhang and Z.S. Luo, Nanosphere of ordered silica MCM-41 hydrothermally synthesized with low surfactant concentration, Chem. Lett. 2000, 1044–1045 (2000).

    Article  Google Scholar 

  61. L. Wang, S. Velu, S. Tomura, F. Ohashi and K. Suzuki, Synthesis and characterization of CuO containing mesoporous silica spheres, J. Mater. Sci. 37, 801–806 (2002).

    Article  CAS  Google Scholar 

  62. A.K. van Helden and A. Vrij, Contrast variation in light scattering: silica spheres dispersed in apolar solvent mixtures, J. Colloid Interface Sci. 76, 418–433 (1980).

    Article  Google Scholar 

  63. A.K. van Helden, J.W. Jansen and A. Vrij, Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents, J. Colloid Interface Sci. 81, 354–368 (1981).

    Article  Google Scholar 

  64. K. Bridger, D. Falkenhurst and B. Vincent, Nonaqueous silica dispersions stabilized by terminally-grafted polystyrene chains, J. Colloid Interface Sci. 68, 190–195 (1979).

    Article  CAS  Google Scholar 

  65. H. de Hek and A. Vrij, Preparation of sterically stabilized silica dispersions in nonaqueous media, J. Colloid Interface Sci. 79, 289–294 (1981).

    Article  Google Scholar 

  66. A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprick and W.L Vos, Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres, J. Phys. Chem. B 103, 1408–1415 (1999).

    Article  CAS  Google Scholar 

  67. A. van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8, 2921–2931 (1992).

    Article  Google Scholar 

  68. S. Kang, S. Il Hong, C.R. Choe, M. Park, S. Rim and J. Kim, Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process, Polymer 42, 879–887 (2001).

    Article  CAS  Google Scholar 

  69. O.C. Monteiro, A.C.C. Esteves and T. Trindade, The synthesis of SiO2@CdS nanocomposites using single-molecule precursors, Chem. Mater. 14, 2900–2909 (2002).

    Article  CAS  Google Scholar 

  70. C.E. Moran, G.D. Hale and N.J. Halas, Synthesis and characterization of lanthanide-doped silica microspheres, Langmuir 17, 8376–8379 (2001).

    Article  CAS  Google Scholar 

  71. M.J.A. de Dood, B. Berhout, C.M. van Kats, A. Polman and A. van Blaaderen, Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres, Chem. Mater. 14, 2849–2853 (2002).

    Article  CAS  Google Scholar 

  72. W. Wang and S.A. Asher, Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications, J. Am. Chem. Soc. 123, 12528–12535 (2001).

    Article  CAS  Google Scholar 

  73. L.M. Liz-Marzán, M.A. Correa-Duarte, I. Pastoriza-Santos, P. Mulvaney, T. Ung, M. Giersig and N.A. Kotov, Core shell nanoparticles and assemlies thereof, in Handbook of Surfaces and Interfaces of Materials, Ed. H.S. Nalwa, Academic Press, San Diego, USA, 2001, Chapter 5.

    Google Scholar 

  74. F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13(1), 11–22 (2001).

    Article  CAS  Google Scholar 

  75. N.A.M. Verhaegh and A. van Blaaderen, Dispersions of rhodamine labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy, Langmuir 10, 1427–1438 (1994).

    Article  CAS  Google Scholar 

  76. S.Y. Chang, L. Liu and S.A. Asher, Creation of templated complex topological morphologies in colloidal silica, J. Am. Chem. Soc. 116, 6745–6747 (1994).

    Article  CAS  Google Scholar 

  77. L.M. Liz-Marzan, M. Giersig and P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles, Langmuir 12, 4329 (1996).

    Article  CAS  Google Scholar 

  78. C. Graf, W. Schärtl, K. Fischer, N. Hugenberg and M. Schmidt, Dye-labeled poly(organosiloxane) microgels with core-shell architecture, Langmuir 15, 6170–6180 (1999).

    Article  CAS  Google Scholar 

  79. K.P. Velikov, A. Moroz and A. van Blaaderen, Photonic crystals of core-shell colloidal particles, Appl. Phys. Lett. 80, 49–51 (2002).

    Article  CAS  Google Scholar 

  80. W. Strek, P.J. Deren, E. Lukowiak, J. Hanuza, H. Drulis, A. Bednarkiewicz and V. Gaishun, Spectroscopic studies of chromium-doped silica sol-gel glasses, J. Non-cryst. Solids 288, 56–65 (2001).

    Article  CAS  Google Scholar 

  81. S. Ramesh, Y. Cohen, D. Aurbach and A. Gedanken, AFM investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica, Chem. Phys. Lett. 287, 461–467 (1998).

    Article  CAS  Google Scholar 

  82. V.B. Prokopenko, V.S. Gurin, A.A. Alexeenko, V.S. Kulikauskas and D.L. Kovalenko, Surface segregation of transition metals in sol-gel silica films, J. Phys. D: Appl. Phys. 33, 3152–3155 (2000).

    Article  CAS  Google Scholar 

  83. C.F. Song, M.K. Lü, P. Yang, D. Xu and D.R. Yuan, Study on the photoluminescence properties of sol-gel Ti3+ doped silica glasses, J. Sol-Gel Sci. Technol. 25, 113–119 (2002).

    Article  CAS  Google Scholar 

  84. S.M. Jones and S.E. Friberg, Charge transfer transitions of copper (II) in drying silicate xerogels, Phys. Chem. Glasses 37(3), 111–115 (1996).

    CAS  Google Scholar 

  85. M. Nofz, R. Stösser, B. Unger and W. Herrmann, The function of paramagnetic iron species in amorphous materials formed by sol-gel method and conventional melting techniques, J. Non-Cryst. Solids 149, 62–76 (1992).

    Article  CAS  Google Scholar 

  86. M.A. Villegas, M.A. Garcia, J. Llopis and J.M. Fernandez Navarro, Optical spectroscopy of hybrid sol-gel coatings doped with noble metals, J. Sol-Gel Sci. Technol. 11, 251–265 (1998).

    Article  CAS  Google Scholar 

  87. B. Friedel, Dotierung von Siliziumdioxid-Kugeln für photonische Anwendungen, Diploma thesis, Paderborn, Germany, 2003.

    Google Scholar 

  88. Y. Sun and Y. Xia, Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction, Nano Lett. 3, 1569–1572 (2003).

    Article  CAS  Google Scholar 

  89. S. Greulich-Weber and E. Waldmüller, unpublished results.

    Google Scholar 

  90. L.H. Slooff, M.J.A. de Dood, A. van Blaaderen and A. Polman, Erbium-implanted silica colloids with 80% luminescence quantum efficiency, Appl. Phys. Lett. 76(25), 3682–3684 (2000).

    Article  Google Scholar 

  91. L.H. Slooff, A. van Blaaderen, A. Polman, G.A. Hebbink, S.I. Klink, F.C.J.M. van Veggel, D.N. Reinhoudt and J.W. Hofstraat, Rare-earth doped polymers for planar optical amplifiers, J. Appl. Phys. 91(7), 3955–3980 (2002).

    Article  CAS  Google Scholar 

  92. C. De Julian Fernandez, C. Sangregorio, G. Mattei, G. De, A. Saber, S. Lo Russo, G. Battaglin, M. Catalano, E. Cattaruzza, F. Gonella, D. Gatteschi and P. Mazzoldi, Structure and magnetic properties of alloy-based nanoparticles silica composites prepared by ion-implantation and sol-gel techniques, Mater. Sci. Eng. C 15, 59–61 (2001).

    Article  Google Scholar 

  93. Y. Takeda, C.G. Lee and N. Kishimoto, Optical properties of nanoparticle composites in insulators by high-flux 60 keV Cu implantation, Nucl. Instrum. Methods Phys. Res. B 190, 797–801 (2002).

    Article  CAS  Google Scholar 

  94. D.L. Griscom, E′ center in glassy SiO2 microwave saturation properties and confirmation of the primary 29Si hyperfine structure, Phys. Rev. B 20, 1823 (1979).

    Article  CAS  Google Scholar 

  95. M. Donbrow (Ed.), Microcapsules and Nanoparticles in Medicine and Pharmacy, CRC Press, Boca Raton, FL, 1992, Chapters 6 and 16.

    Google Scholar 

  96. R. Langner, New methods of drug delivery, Science 249, 1527–1533 (1990).

    Google Scholar 

  97. F. Caruso, R.A. Caruso and H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  98. E.M.B. de Sousa, A.P.G. de Sousa, N.D.S. Mohallem and R.M. Lago, Copper-silica sol-gel catalysts: structural changes of Cu species upon thermal treatment, J. Sol-Gel Sci. Technol. 26, 873–877 (2003).

    Article  Google Scholar 

  99. I.L. Lyubchanskii, N.N. Dadoenkova, M.I. Lyubchanskii, E.A. Shapovalov and Th. Rasing, Magnetic photonic crystals, J. Phys. D: Appl. Phys. 36, R277–R287 (2003).

    Article  CAS  Google Scholar 

  100. C. Koerdt, G.L.J.A. Rikken and E.P. Petrov, Faraday effect of photonic crystals, Appl. Phys. Lett. 82(10), 1538–1541 (2003).

    Article  CAS  Google Scholar 

  101. E.L. Bizdoacaa, M. Spasovaa, M. Farlea, M. Hilgendorffb and F. Carusoc, Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell, J. Magn. Magn. Mater. 240, 44–46 (2002).

    Article  Google Scholar 

  102. C.B. Murray, Shouheng Sun, W. Gaschler, H. Doyle, T.A. Betley and C.R. Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices, IBM J. Res. Dev. 45(1), 47–56 (2001).

    Article  CAS  Google Scholar 

  103. R. Wiesendanger, M. Bode, M. Kleiber, M. Lohndorf, R. Pascal, A. Wadas and D. Weiss, Magnetic nanostructures studied by scanning probe microscopy and spectroscopy, J. Vac. Sci. Technol. B 15, 1330 (1997).

    Article  CAS  Google Scholar 

  104. S. O’Brien and J.B. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys.: Condens. Matter 14, 6383–6394 (2002).

    Article  CAS  Google Scholar 

  105. A.J. Haes, C.L. Haynes and R.P. Van Duyne, Nanosphere lithography: self-assembled photonic and magnetic materials, Mater. Res. Soc. Symp. 636, D4.8/1–D4.8/6 (2001).

    CAS  Google Scholar 

  106. A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50(4), 466–472 (2000).

    Article  CAS  Google Scholar 

  107. Y. Jiang, C. Whitehouse, Jensen Li, Wing Yim Tam, C.T. Chan and Ping Sheng, Optical properties of metallo-dielectric microspheres in opal structures, J. Phys.: Condens. Matter 15, 5871–5879 (2003).

    Article  CAS  Google Scholar 

  108. N. Eradata, J.D. Huanga, Z.V. Vardenya, A.A. Zakhidovb, I. Khayrullinb, I. Udodb and R.H. Baughmanb, Optical studies of metal-infiltrated opal photonic crystals, Synth. Met. 116, 501–504 (2001).

    Article  Google Scholar 

  109. A.P. Philipse, Solid opaline packings of colloidal silica spheres, J. Mater. Sci. Lett. 8(12), 1371–1373 (1989).

    Article  CAS  Google Scholar 

  110. J.V. Sanders, Colour of precious opal, Nature 204, 1151–1153 (1964).

    Google Scholar 

  111. J. Aizenberg, P.V. Braun and P. Wiltzius, Patterned colloidal deposition controlled by electrostatic and capillary forces, Phys. Rev. Lett. 84, 2997 (2000).

    Article  CAS  Google Scholar 

  112. T.C. Simonton, R. Roy, S. Komarneni and E. Breval, Microstructure and mechanical properties of synthetic opal: a chemically bonded ceramic, J. Mater. Res.1, 667 (1986).

    CAS  Google Scholar 

  113. V.N. Bogomolov, S.V. Gaponenko, I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyavina, N.I. Silvanovich and S.M. Samoilovich, Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55, 7619–7625 (1997).

    Article  CAS  Google Scholar 

  114. O.D. Velev, T.A. Jede, R.F. Lobo and A.M. Lenhoff, Porous silica via colloidal crystallization, Nature 389, 447 (1997).

    Article  CAS  Google Scholar 

  115. O.D. Velev, T.A. Jede, R.F. Lobo and A.M. Lenhoff, Microstructured porous silica obtained via colloidal crystal templates, Chem. Mater. 10, 3597 (1998).

    Article  CAS  Google Scholar 

  116. S.H. Park and Y. Xia, Dimensionally interconnected spherical pores, Adv. Mater. 10, 1045–1046 (1998).

    Article  CAS  Google Scholar 

  117. B. Gates, Y. Yin and Y. Xia, Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures, Chem. Mater. 11, 2827–2836 (1999).

    Article  CAS  Google Scholar 

  118. B.T. Holland, C.F. Blanford and A. Stein, Synthesis of highly ordered three-dimensional mineral honeycombs with macropores, Science 281, 538–540 (1998).

    Article  CAS  Google Scholar 

  119. H. Yan, C.F. Blanford, B.T. Holland, M. Parent, W.H. Smyrl and A. Stein, A general chemical synthesis of periodic macroporous metals, Adv. Mater. 11, 1003–1006 (1999).

    Article  CAS  Google Scholar 

  120. O.D. Velev, P.M. Tessier, A.M. Lenhoff and E.W. Kaler, A class of porous metallic nanostructures, Nature 401, 548 (1999).

    Article  CAS  Google Scholar 

  121. P.V. Braun and P. Wiltzius, Electrochemically grown photonic crystals, Nature 402, 603–604 (1999).

    Article  CAS  Google Scholar 

  122. P.N. Bartlett, T. Dunford and M.A. Ghanem, Templated electrochemical deposition of nanostructured macroporous PbO2, J. Mater. Chem., 12, 3130–3135 (2002).

    Article  CAS  Google Scholar 

  123. P. Jiang, J. Cizeron, J.F. Bertone and V.L. Colvin, Preparation of macroporous metal films from colloidal crystal, J. Am. Chem. Soc. 121, 7957–7958 (1999).

    Article  CAS  Google Scholar 

  124. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides and G.D. Stucky, Hierarchically ordered oxides, Science 282, 2244–2246 (1998).

    Article  CAS  Google Scholar 

  125. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. Moya, J. Requena, A. Mifsud and V. Fornes, Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering, Adv. Mater. 10, 480–483 (1998).

    Article  CAS  Google Scholar 

  126. S. Tsunekawa, Y.A. Barnakov, V.V. Poborchii, S.M. Samoilovich, A. Kasuya and Y. Nishina, Characterization of precious opals: AFM and SEM observations, photonic band gap, and incorporation of CdS nano-particles, Microporous Mater. 8, 275 (1997).

    Article  CAS  Google Scholar 

  127. J. Wijnhoven and W.L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998).

    Article  CAS  Google Scholar 

  128. M. Trau, D.A. Saville and I.A. Aksay, Field-induced layering of colloidal crystals, Science 272, 706 (1996).

    CAS  Google Scholar 

  129. M. Trau, D.A. Saville and I.A. Aksay, Assembly of colloidal crystals at electrode interfaces, Langmuir 13, 6375–6381 (1997).

    Article  CAS  Google Scholar 

  130. M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C.J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer and C. Lopez, Electrophoretic deposition to control artificial opal growth, Langmuir 15, 4701–4704 (1999).

    Article  CAS  Google Scholar 

  131. O. Stern, Zur Theore der elektrischen Doppelschicht, Z. Elektrochem. 30, 508 (1924).

    CAS  Google Scholar 

  132. J.N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London and New York, 1992.

    Google Scholar 

  133. M. Elimelech, J. Gregory, X. Jia and R.A. Williams, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation, Butterworth, Oxford, 1995.

    Google Scholar 

  134. J. Gregory, Interaction of unequal double layers at constant charge, J. Colloid Interface Sci. 51, 44–51 (1975).

    Article  Google Scholar 

  135. G.M. Bell, S. Levine and L.N. McCartney, Approximate methods of determining the double-layer free energy of interaction between two charged colloid spheres, J. Colloid Int. Sci.33, 335 (1970).

    Article  CAS  Google Scholar 

  136. A.K. Arora and B.V.R. Tata (Eds.), Ordering and Phase Transitions in Charged Colloids, VCH Publishers, New York, 1996.

    Google Scholar 

  137. P. Debye and E. Hückel, Zur Theorie der Elektrolyte, Physik. Zeitschr. 24, 305–325 (1923).

    CAS  Google Scholar 

  138. G.A. Parks, The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems, Chem. Rev. 65, 177–198 (1977).

    Article  Google Scholar 

  139. R.J. Hunter, Foundations of Colloid Science, Vol. 1, Oxford University Press, Oxford, 1986.

    Google Scholar 

  140. H.C. Hamaker, London-van der Waals attraction between spherical particles, Physica 4, 1058–1072 (1937).

    CAS  Google Scholar 

  141. W.C.K. Poon and P.B. Warren, Phase behaviour of hard-sphere mixtures, Europhys. Lett. 28(7), 513–518 (1994).

    CAS  Google Scholar 

  142. H. Sonntag and K. Strenge, Coagulation Kinetics and Structure Formation, VEB Deutscher Verlag der Wissenschaften, Kluwer Academic/Plenum, New York, 1988.

    Google Scholar 

  143. J. Mahanty and B.W. Ninham, Dispersion Forces, Academic Press, New York, 1976.

    Google Scholar 

  144. B.W. Ninham, K. Kurihara and O.I. Vinogradova, Hydrophobicity, specific ion adsorption and reactivity colloids, Surf. A: Physicochem. Eng. Aspects 123–124, 7–12 (1997).

    Article  Google Scholar 

  145. B.W. Ninham and V. Yaminsky, Ion binding and ion specificity: the Hofmeister effect and Onsanger and Lifshitz theories, Langmuir 13, 2097–2108 (1997).

    Article  CAS  Google Scholar 

  146. B.W. Ninham, On progress in forces since the DLVO theory, Adv. Colloid Interface Sci. 83, 1–17 (1999).

    Article  CAS  Google Scholar 

  147. B.V. Derjaguin and L.D. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. U.S.S.R. 14, 633 (1941).

    Google Scholar 

  148. E.J. Verwey and J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.

    Google Scholar 

  149. W.B. Russel, D.A. Saville and W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  150. B.A. Pailthorpe and W.B. Russel, The retarded van der Waals interaction between spheres, J. Colloid Int. Sci. 89(2), 563–566 (1982).

    Article  CAS  Google Scholar 

  151. T. Sugimoto, T. Takahashi, H. Itoh, S. Sato and A. Muramatsu, Direct measurement of interparticle forces by the optical trapping technique, Langmuir 13(21), 5528–5530 (1997).

    Article  CAS  Google Scholar 

  152. S. Asakura and F. Oosawa, Interaction between particles suspended in solutions of macromolecules, J. Polym. Sci. 33, 183 (1958).

    Article  CAS  Google Scholar 

  153. A. Vrij, Polymers at interfaces and the interactions in colloidal dispersions, Pure Appl. Chem. 48, 471–483 (1976).

    CAS  Google Scholar 

  154. S. Asakura and F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules, J. Chem. Phys. 22, 1255–1256 (1954).

    CAS  Google Scholar 

  155. Y. Mao, M.E. Cates and H.N.W. Lekkerkerker, Depletion force in colloidal systems, Physica A 222, 10–24 (1995).

    Article  CAS  Google Scholar 

  156. A. Einstein, On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat (Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen), Annalen der Physik 17, 123 (1905).

    Google Scholar 

  157. H. de Hek and A. Vrij, Phase separation in non-aqueous dispersions containing polymer molecules and colloidal spheres, J. Colloid Interface Sci. 70(3), 592–598 (1979).

    Article  Google Scholar 

  158. C. Pathmamanobaran, H. de Hek and A. Vrij, Phase seperation in mixtures of organophilic spherical silica particles and polymer molecules in good solvents, Colloid Polym. Sci. 259, 769 (1981).

    Article  Google Scholar 

  159. S.M. Ilett, A. Orrock, W.C.K. Poon and P.N. Pusey, Phase behavior of a model colloid-polymer mixture, Phys. Rev. E 51(2), 1344 (1995).

    Article  CAS  Google Scholar 

  160. O.D. Velev, A.M. Lenhoff and E.W. Kaler, A class of microstructured particles through colloidal crystallization, Nature (London) 287, 2240 (2000).

    CAS  Google Scholar 

  161. R.C. Salvarezza, L. Vázquez, H. Míguez, R. Mayoral, C. López and F. Meseguer, Edward-Wilkinson behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres, Phys. Rev. Lett. 77(22), 4572–4575 (1996).

    Article  CAS  Google Scholar 

  162. M.O. Robbins, K. Kremer and G.S. Grest, Phase diagram and dynamics of Yukawa systems, J. Chem. Phys. 88(5), 3286–3312 (1988).

    Article  CAS  Google Scholar 

  163. P.N. Pusey and W. van Megen, Phase behavior of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  164. M. Sullivan, K. Zhao, Ch. Harrison, R.H. Austin, M. Megens, A. Hollingsworth, W.B. Russel, Zhengdong Cheng, Th. Mason and P.M. Chaikin, Control of colloids with gravity, temperature, gradients, and electric fields, J. Phys.: Condens. Matter 15, S11–S18 (2003).

    Article  CAS  Google Scholar 

  165. R. Tuinier, J. Rieger and C.G. de Kruif, Depletion-induced phase separation in colloid-polymer mixtures, Adv. Colloid Interface Sci. 103, 1–31 (2003).

    Article  CAS  Google Scholar 

  166. N.M. Dixit and C.F. Zukoski, Kinetics of crystallization in hard-sphere colloidal suspensions, Phys. Rev. E 64, 041604–041610 (2001).

    Article  CAS  Google Scholar 

  167. P. Pieranski, Colloidal crystals, Contemp. Phys. 24(1), 25–73 (1983).

    CAS  Google Scholar 

  168. I. Snook and W. van Megan, Calculation of the wave-vector dependent diffusion constant in concentrated electrostatically stabilized dispersions, J. Colloid Interface Sci. 100(1), 194–202 (1984).

    Article  CAS  Google Scholar 

  169. A.P. Gast and W.B. Russel, Simple ordering in complex fluids, Phys. Today December, 24 (1998).

    Google Scholar 

  170. N. Ise, How and why do like-charged particles in solution repel one another? Ordered regions in dilute solutions of macroions, Angew. Chem. Int. Ed. Engl. 98(4), 323–334 (1986).

    Article  CAS  Google Scholar 

  171. S. Dosho, N. Ise, K. Ito, S. Iwai, H. Kitano, H. Matsuoka, H. Nakamura, H. Okumura, T. Ono, I.S. Sogami, Y. Ueno, H. Yoshida and T. Yoshiyama, Recent study of polymer latex dispersions, Langmuir 9, 394–411 (1993).

    Article  CAS  Google Scholar 

  172. N.A. Clark, A.J. Hurd and B.J. Ackerson, Single colloid crystals, Nature 281, 57–60 (1979).

    Article  CAS  Google Scholar 

  173. P. Pieranski, L. Strzelecki and B. Pansu, Thin colloidal crystals, Phys. Rev. Lett. 50, 900 (1983).

    Article  CAS  Google Scholar 

  174. T. Okubo, Giant colloidal single crystals of polystyrene and silica spheres in deionized suspension, Langmuir 10, 1695–1702 (1994).

    Article  CAS  Google Scholar 

  175. E.A. Kamenetzky, L.G. Magliocco and H.P. Panzer, Structure of solidified colloidal array laser filters studied by cryogenic transmission electron microscopy, Science 263, 207–210 (1994).

    CAS  Google Scholar 

  176. H.B. Sunkara, J.M. Jethmalani and W.T. Ford, Composite of colloidal crystals of silica in poly(methyl methacrylate), Chem. Mater. 6, 362 (1994).

    Article  CAS  Google Scholar 

  177. M. Weissman, H.B. Sunkara, A.S. Tse and S.A. Asher, Thermally switchable periodicities from novel mesocopically ordered materials, Science 274, 959–960 (1996).

    Article  CAS  Google Scholar 

  178. O. Vickreva, O. Kalinina and E. Kumacheva, Colloid crystal growth under oscillatory shear, Adv. Mater. 12, 110–112 (2000).

    Article  CAS  Google Scholar 

  179. J. Zhu, M. Li, R. Rogers, W. Meyer and R.H. Ottewill, STS-73 space shuttle crew, W.Z.B. Russel and P.M. Chaikin, Crystallization of hard sphere colloids in μ-gravity, Nature 387, 883 (1997).

    Article  CAS  Google Scholar 

  180. S. Beyer, NeueWege zur Kristallisation von Nanopartikeln zu photonischen Kristallen, Diploma thesis, Paderborn, Germany, 2003.

    Google Scholar 

  181. P. Richetti, J. Prost and P. Barois, Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres, J. Phys. Lett. 45, L1137–L1143 (1984).

    Google Scholar 

  182. S.-R. Yeh, M. Seul and B.I. Shraiman, Light-modulated electrokinetic assembly of planar colloidal arrays, Nature 386, 57–59 (1997).

    Article  CAS  Google Scholar 

  183. Y. Solomentsev, M. Bohmer and J.L. Anderson, Electrophoretic cepositiion: a hydrodynamic model, Langmuir 13, 6058 (1997).

    Article  CAS  Google Scholar 

  184. R.C. Hayward, D.A. Saville and I.A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature 404, 56–59 (2000).

    Article  CAS  Google Scholar 

  185. T. Gong and D.W.M. Marr, Electrically switchable colloidal ordering in confined geometries, Langmuir 17, 2301–2304 (2001).

    Article  CAS  Google Scholar 

  186. C. Mio and D.W.M. Marr, Optical trapping for the manipulation of colloidal particles, Adv. Mater. 12, 917–920 (2000).

    Article  CAS  Google Scholar 

  187. C. Mio and D.W.M. Marr, Tailored surfaces using optically manipulated colloidal particles, Langmuir 15, 8565–8568 (1999).

    Article  CAS  Google Scholar 

  188. A. van Blaaderen, R. Ruel and P. Wiltzius, Template-directed colloidal crystallization, Nature (London) 385, 321 (1997).

    Article  Google Scholar 

  189. K.E. Davis, W.B. Russel and W.J. Glantschnig, Settling suspensions of colloidal silica: observations and x-ray measurements, J. Chem. Soc. Faraday Trans. 87, 411 (1991).

    Article  CAS  Google Scholar 

  190. P. Jiang, J.F. Bertone, K.S. Hwang and V.L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 11, 2132–2140 (1999).

    Article  CAS  Google Scholar 

  191. Y.C. Chan, M. Carles, Nikolaus J Sucher, M. Wong and Y. Zohar, Design and fabrication of an integrated microsystem for microcapillary electrophoresis, J. Micromech. Microeng. 13, 914–921 (2003).

    Article  CAS  Google Scholar 

  192. H.A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  193. T.B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  194. S.O. Lumsdon, E.W. Kaler, J.P. Williams and O.D. Veleva, Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals, Appl. Phys. Lett. 82(6), 949–951 (2003).

    Article  CAS  Google Scholar 

  195. M. Golosovsky, Y. Saado and D. Davidov, Self-assembly of floating magnetic particles into ordered structures—a promising route for the fabrication of photonic bandgap materials, Appl. Phys. Lett. 75, 4168–4170 (1999).

    Article  CAS  Google Scholar 

  196. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura and K. Nagayama, Twodimensional crystallization, Nature (London) 361, 26 (1993).

    Article  Google Scholar 

  197. Q.H. Wei, D.M. Cupid and X.L. Xu, Controlled assembly of two-dimensional colloidal crystals, Appl. Phys. Lett. 77, 1641–1643 (2000).

    Article  CAS  Google Scholar 

  198. G. Picard, Fine particle monolayers made by a mobile dynamic thin laminar flow (DTLF) device, Langmuir 14(13), 3710–3715 (1998).

    Article  CAS  Google Scholar 

  199. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura and K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8, 3183–3190 (1992).

    Article  CAS  Google Scholar 

  200. A.S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into morphocolored two-dimensional arrays, Langmuir 12, 1303–1311 (1996).

    Article  CAS  Google Scholar 

  201. O.D. Velev, N.D. Denkov, V.N. Paunov, P.A. Kralchevsky and K. Nagayama, Direct measurement of lateral capillary forces, Langmuir 9, 3702 (1993).

    Article  CAS  Google Scholar 

  202. S. Rakers, L.F. Chi and H. Fuchs, Influence of the evaporation rate on the packing order of polydisperse latex monofilms, Langmuir 13, 7121–7124 (1997).

    Article  CAS  Google Scholar 

  203. A.S. Dimitrov, T. Miwa and K. Nagayama, A comparison between the optical properties of amorphous and crystalline monolayers of silica particles, Langmuir 15, 5257–5264 (1999).

    Article  CAS  Google Scholar 

  204. P.A. Kralchevsky, N.D. Denkov, V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura and K. Nagayama, Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces, J. Phys.: Condens. Matter 6, A395 (1994).

    Article  CAS  Google Scholar 

  205. R. Amos, J.G. Rarity, P.R. Tapster, T.J. Shepherd and S. Kitson, Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000).

    Article  CAS  Google Scholar 

  206. Yong-Hong Ye, F. LeBlanc, A. Hache and Vo-Van Truongb, Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality, Appl. Phys. Lett. 78(1), 52–54 (2001).

    Article  CAS  Google Scholar 

  207. D.H. Van Winkle and C.A. Murray, Layering transitions in colloidal crystals as observed by diffraction and direct lattice imaging, Phys. Rev. 34, 562 (1986).

    Article  Google Scholar 

  208. S. Neser, C. Bechinger, P. Leiderer and T. Palberg, Finite size effects on the closest packing of hard spheres, Phys. Rev. Lett. 79, 2348 (1997).

    Article  CAS  Google Scholar 

  209. S.H. Park, D. Qin and Y.X. Xia, Crystallization of meso-scale particles over large areas, Adv. Mater. 10, 1028–1031 (1998).

    Article  CAS  Google Scholar 

  210. S.H. Park and Y. Xia, Crystallization of meso-scale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266–273 (1999).

    Article  CAS  Google Scholar 

  211. B. Gates, D. Qin and Y. Xia, Assembly of nanoparticles into opaline structures over large areas, Adv. Mater. 11, 466–469 (1999).

    Article  CAS  Google Scholar 

  212. Y. Lu, Y. Yin and Y. Xia, A self-assembly approach to the fabrication of patterned 2D arrays of microlenses of organic polymers, Adv. Mater. 13, 34–37 (2001).

    Article  CAS  Google Scholar 

  213. K. Lin, J.C. Crocker, V. Prasad, A. Schofield, D.A. Weitz, T.C. Lubensky and A.G. Yodh, Entropically driven colloidal crystallization on patterned surfaces, Phys. Rev. Lett. 85, 1770 (2000).

    Article  CAS  Google Scholar 

  214. Y.-H. Ye, S. Badilescu, Vo-Van Truong, P. Rochon and A. Natansohn, Self-assembly of colloidal spheres on patterned substrates, Appl. Phys. Lett. 79, 872–874 (2001).

    Article  CAS  Google Scholar 

  215. Y. Yin, Y. Lu and Y. Xia, A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids, J. Am. Chem. Soc. 123, 771–772 (2001).

    Article  CAS  Google Scholar 

  216. Y. Yin and Y. Xia, Self-assembly of monodispersed col1oidal spheres into complex aggregates with well-defined sizes, shapes, and structures, Adv. Mater. 13, 267–271 (2001).

    Article  CAS  Google Scholar 

  217. Y. Yin, Y. Lu and Y. Xia, Self-assembly of monodispersed spherical colloids into 1D chains with well-defined lengths and structures, J. Mater. Chem. 11, 987–989 (2001).

    Article  CAS  Google Scholar 

  218. E. Kim, Y. Xia and G.M. Whitesides, Two-and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries, Adv. Mater. 8, 245–247 (1996).

    Article  CAS  Google Scholar 

  219. S.M. Yang and G.A. Ozin, Opal-chips: vectorial growth of colloidal crystal patterns inside silicon wafers, Chem. Commun. 2507–2508 (2000).

    Google Scholar 

  220. G.A. Ozin and M.Y. Yang, Race for the photonic chip, opal-patterned chips, Adv. Funct. Mater. 11, 1–10 (2001).

    Article  Google Scholar 

  221. Y. Lu, Y. Yin and Y. Xia, Three-dimensional photonic crystals with non-spherical colloids as building blocks, Adv. Mater. 13(6), 415 (2001).

    Article  CAS  Google Scholar 

  222. J. Tien, A. Terfort and G.M. Whitesides, Microfabrication through electrostatic self-assembly, Langmuir 13, 5349–5355 (1997).

    Article  CAS  Google Scholar 

  223. K.M. Chen, X. Jiang, L.C. Kimerling and P.T. Hammond, Selective self organization of colloids on patterned polyelectrolyte templates, Langmuir 26, 7825–7834 (2000).

    Article  CAS  Google Scholar 

  224. B.T. Holland, C.F. Blanford, T. Do and A. Stein, Synthesis of highly ordered three-dimensional macroporous structures of amorphous or crystalline inorganic oxides, phosphates and hybrid composites, Chem. Mater. 11, 795–805 (1999).

    Article  CAS  Google Scholar 

  225. M. Deutsch, Y.A. Vlasov and D.J. Norris, Conjugated-polymer photonic crystals, Adv. Mater. 12, 1176 (2000).

    Article  CAS  Google Scholar 

  226. A. von Rhein, Synthese, Dotierung und Analyse von TiO2-Nanopartikeln für die Photonik, Diploma thesis, Paderborn, Germany, 2003.

    Google Scholar 

  227. J.S. Yin and Z.L. Wang, Template-assisted self-assembling and cobalt doping of ordered meroporous titania nanostructures, Adv. Mater. 11, 469 (1999).

    Article  CAS  Google Scholar 

  228. Y.A. Vlasov, N. Yao and D.J. Norris, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Adv. Mater. 11, 165 (1999).

    Article  CAS  Google Scholar 

  229. V.N. Subramanian, J.D. Manoharan, D.J. Thorne, and D. Pine, Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials, Adv. Mater. 11, 1261–1265 (1999).

    Article  CAS  Google Scholar 

  230. A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti and V.G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897–901 (1998).

    Article  CAS  Google Scholar 

  231. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. López, F. Meseguer, H. Míguez, J.P. Mondía, G.A. Ozin, O. Toader and H.M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers, Nature 405, 437–440 (2000).

    Article  CAS  Google Scholar 

  232. H. Miguez, E. Chomski, F. Garcia-Santamaria, M. Ibisate, S. John, C. Lopez, F. Meseguer, J.P. Mondia, G.A. Ozin, O. Toader and H.M. van Driel, Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition, Adv. Mater. 13, 1634–1637 (2001).

    Article  CAS  Google Scholar 

  233. C.C. Cheng, A. Scherer, V. Arbet-Engels and E. Yablonovitch, Lithographic band gap tuning in photonic band gap crystals, J. Vac. Sci. Technol. B 14, 4110–4114 (1996).

    Article  CAS  Google Scholar 

  234. C.A. Murray and D.G. Grier, Colloidal crystals, Am. Sci. 83, 238 (1995).

    Google Scholar 

  235. D.G. Grier (Ed.), From Dynamics to Devices: Directed Self-Assembly of Colloidal Materials, a special issue in MRS Bull. 23(10), 21 (1998).

    Google Scholar 

  236. D.H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, London, 1988.

    Google Scholar 

  237. R.J. Hunter, Introduction to Modern Colloid Science, Oxford University Press, Oxford, 1993.

    Google Scholar 

  238. Y. Xia, B. Gates, Y. Yin and Y. Lu, Monodispersed colloidal spheres: old materials with new applications, Adv. Mater. 12, 693–713 (2000).

    Article  CAS  Google Scholar 

  239. E. Matijevic, Uniform inorganic colloid dispersions: achievements and challenges, Langmuir 10, 8 (1994).

    Article  CAS  Google Scholar 

  240. E. Matijestic (Ed.), Fine Particles, a special issue in MRS Bulletin 14(12), 18 (1989).

    Google Scholar 

  241. R.K. Iler, The Chemistry of Silica, Wiley-Interscience, New York, 1979.

    Google Scholar 

  242. I. Piirma (Ed.), Emulsion Polymerization, Academic Press, New York, 1982.

    Google Scholar 

  243. G.W. Poehlein, R.H. Ottewill and J.W. Goodwin (Eds.), Science and Technology of Polymer Colloids, Vols. 1 and 2, Proc. of ASI, Bristol, England, 1983.

    Google Scholar 

  244. A.D. Dinsmore, J.C. Crocker and A.G. Yodh, Self-assembly of colloidal crystals, Curr. Opin. Colloid Interface 3, 5–11 (1998).

    Article  CAS  Google Scholar 

  245. J.H. Holtz and S.A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829–832 (1997).

    Article  CAS  Google Scholar 

  246. R. Mayoral, J. Requena, C. López, S.J. Moya, H. Míguez, L. Vázquez, F. Meseguer, M. Holgado, A. Cintas and A. Blanco, 3D long range ordering of submicrometric SiO2 sintered superstructures, Adv. Mater. 9, 257–260 (1997).

    Article  CAS  Google Scholar 

  247. I.I. Tarhan and G.H. Watson, Photonic band structure of fcc colloidal crystals, Phys. Rev. Lett. 76, 315 (1996).

    Article  CAS  Google Scholar 

  248. J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.

    Google Scholar 

  249. J.T. Londergan, J.P. Carini and D.P. Murdock, Binding and Scattering in Two-Dimensional Systems: Application to Quantum Wires, Waveguides and Photonic Crystals, Springer, Berlin, 1999.

    Google Scholar 

  250. Photonic crystals and light localization, in Photonic Crystals and Light Localization in the 21st Century 2001, Proceedings of a NATO Advanced Study Institute, Crete, Greece, Ed C. Soukoulis, NATO Science Series, Kluwer, Dodrecht, 2000.

    Google Scholar 

  251. K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.

    Google Scholar 

  252. S.G. Johnson and J.D. Joannoupolos, Photonic Crystals: The Road from Theory to Practice, Kluwer, Boston, 2002.

    Google Scholar 

  253. W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A. Le Gros, C.A. Larabell and A.P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology 14, R15–R27 (2003).

    Article  CAS  Google Scholar 

  254. T.A. Taton, Boning up on biology, Nature 412, 491–492 (2001).

    Article  CAS  Google Scholar 

  255. W.C.W. Chan and S. Nie, Quantum-dot bioconjugates for ultrasensitive nonisotopic detection, Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  256. S. Pathak, S.-K. Choi, N. Arnheim and M.E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization, J. Am. Chem. Soc. 123(17), 4103–4104 (2001).

    Article  CAS  Google Scholar 

  257. E. Klarreich, Biologists join the dots, Nature 413, 450–452 (2001).

    Article  CAS  Google Scholar 

  258. P.S. Weiss, Nanotechnology: molecules join the assembly line, Nature 413, 585–586 (2001).

    Article  CAS  Google Scholar 

  259. S.J. Rosenthal, I. Tomlinson, E.M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L.J. DeFelice and R.D. Blakely, J. Am. Chem. Soc. 124, 4586–4594 (2002).

    Article  CAS  Google Scholar 

  260. J.K. Jaiswal, H. Mattoussi, J.M. Mauro and S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21, 47–51 (2003).

    Article  CAS  Google Scholar 

  261. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber, An in vivo imaging of quantum dots encapsulated in phospholipid micelles, Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  262. M.E. Akerman, W.C.W. Chan, P. Laakkonen, S.N. Bhatia and E. Ruoslahti, Nanocrystal targeting in vivo, Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  263. M.X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale and M.P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  264. M. Han, X. Gao, J.Z. Su and S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  265. S.J. Rosenthal, Bar-coding biomolecules with fluorescent nanocrystals, Nat. Biotechnol. 19, 621–622 (2001).

    Article  CAS  Google Scholar 

  266. A.P. Alivisatos, Less is more in medicine—sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy, Sci. Am. 285, 66–73 (2001).

    Article  CAS  Google Scholar 

  267. S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic nanocrystal superlattices, Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  268. S. Onodera, H. Kondo and T. Kawana, Materials for magnetic-tape media, MRS Bull. 21(9), 35 (1996).

    CAS  Google Scholar 

  269. K. O’Grady, R.L. White and P.J. Grundy, Whither magnetic recording, J. Magn. Magn. Mater. 177–181, 886891 (1998).

    Google Scholar 

  270. R.L. White, R.M.H. New and R.F.W. Pease, Patterned media: a viable route to 50 Gbit/in2 and up for magnetic recording, IEEE Trans. Magn. 33, 990–995 (1997).

    Article  CAS  Google Scholar 

  271. G. Ennas, A. Mei, A. Musinu, G. Piccaluga, G. Pinna and S. Solinas, Sol-gel preparation and characterization of Ni-SiO2 nanocomposites, J. Non-Cryst. Solids 232–234, 587 (1998).

    Article  Google Scholar 

  272. G.H. Wang and A. Harrison, Preparation of iron particles coated with silica, J. Colloid Interface Sci. 217, 203–207 (1999).

    Article  CAS  Google Scholar 

  273. M. Ohmori and E. Matijevic, Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron, J. Colloid Interface Sci. 160, 288 (1993).

    Article  CAS  Google Scholar 

  274. S. Hui, Y.D. Zhang, T.D. Xiao, M. Wu, S. Ge, W.A. Hines, J.I. Budnick, M.J. Yacaman and H.E. Troiani, in Nanophase and Nanocomposite Materials IV, Mater. Res. Soc. Symposium Proceedings, Warrendale, PA, Vol. 703, Ed. S. Komarneni, R.A. Vaia, G.Q. Lu, J.-I. Matsushita and J.C. Parker, Material Research Society, Warrendale, PA, 2002.

    Google Scholar 

  275. A.P. Philipse, M.P.B.V. Bruggen and C. Pathmamanoharan, Magnetic silica dispersions: preparationand stability of surface-modified silica particles with a magnetic core, Langmuir 10, 92 (1994).

    Article  CAS  Google Scholar 

  276. G.-M. Chow and K.E. Gonsalves (Eds.), Nanotechnology Molecularly Designed Materials, American Chemical Society, Washington, DC, 1996, p. 42.

    Google Scholar 

  277. Q. Liu, Z. Xu, J.A. Finch and R. Egerton, A novel two-step silica coating process for engineering magnetic nanocomposites, Chem. Mater. 10(12), 3936–3940 (1998).

    Article  CAS  Google Scholar 

  278. H.W. Deckman and J.H. Dunsmuir, Natural lithography, Appl. Phys. Lett. 41, 377–379 (1982).

    Article  CAS  Google Scholar 

  279. C. Hulteen and R.P. Van Duyne, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A 13, 1553–1558 (1995).

    Article  Google Scholar 

  280. F. Burmeister, C. Schäfle, B. Keilhofer, C. Bechinger, J. Boneberg and P. Leiderer, From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers, Chem. Eng. Technol. 21, 761 (1998).

    Article  CAS  Google Scholar 

  281. F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg and P. Leiderer, Colloid monolayer lithography—a flexible approach for nanostructuring of surfaces, Appl. Surface Sci. 144–145, 461 (1999).

    Article  Google Scholar 

  282. H. Fang, R. Zeller and P.J. Stiles, Appl. Phys. Lett. 55, 1433 (1989).

    Article  Google Scholar 

  283. T. Iwabuchi, C. Chuang, G. Khitrova, M.E. Warren, A. Chavez-Pirson, H.M. Gibbs, D. Sarid and M. Gallagher, Fabrication of GaAs nanometer scale structures by dry etching, Proc. SPIE 1284, 142 (1990).

    Article  CAS  Google Scholar 

  284. M. Green, M. Garcia-Parajo and F. Khaleque, Quantum pillar structures on n +gallium arsenide fabricated using “natural” lithography, Appl. Phys. Lett. 62, 264–266 (1993).

    Article  CAS  Google Scholar 

  285. W.D. Dozier, K.P. Daly, R. Hu, C.E. Platt and M.S. Wire, Fabrication of high-T c Josephson effect devices by natural lithography, IEEE Trans. Magn. 27(2), 3223–3226 (1991).

    Article  CAS  Google Scholar 

  286. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts and D.C. Allan, Single-mode photonic band gap guidance of light in air, Science 285, 1537–1539 (1999).

    Article  CAS  Google Scholar 

  287. P.S.J. Russell, T.A. Birks, J.C. Knight, R.F. Cregan, B. Mangan and J.P. De Sandro, Silica/air photonic crystal fibres, Japan. J. Appl. Phys., Part 1 37, 45–48 (1998)

    Article  CAS  Google Scholar 

  288. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays, Wiley, New York, 1955.

    Google Scholar 

  289. G. Subramania, K. Constant, R. Biswas, M.M. Sigalas and K.M. Ho, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Lett. 74, 3933 (1999).

    Article  CAS  Google Scholar 

  290. L. Bechger, A.F. Koenderink and W.L. Vos, Emission spectra and lifetimes of R6G dye on silica-coated titania powder, Langmuir 18(6),2444–2447 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Greulich-Weber, S., Marsmann, H. (2005). From Nanosize Silica Spheres to Three-Dimensional Colloidal Crystals. In: Ordered Porous Nanostructures and Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25193-6_6

Download citation

Publish with us

Policies and ethics