Skip to main content

Part of the book series: Operations Research/Computer Science Interfaces Series ((volume 34))

  • 2771 Accesses

Abstract

We survey recent progress related to the following general problem in combinatorial geometry: What is the maximum number of incidences between m points and n members taken from a fixed family of curves or surfaces in d-space? Results of this kind have found numerous applications to geometric problems related to the distribution of distances among points, to questions in additive number theory, in analysis, and in computational geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal and B. Aronov, Counting facets and incidences, Discrete Comput. Geom. 7: 359–369 (1992).

    Article  MathSciNet  Google Scholar 

  2. P.K. Agarwal, B. Aronov and M. Sharir, On the complexity of many faces in arrangements of pseudo-segments and of circles, in Discrete and Computational Geometry-The Goodman-Pollack Festschrift, B. Aronov, S. Basu, J. Pach and M. Sharir (Eds.), Springer-Verlag, Heidelberg, (2003) pp. 1–23.

    Google Scholar 

  3. P.K. Agarwal and J. Erickson, Geometric range searching and its relatives, in: Advances in Discrete and Computational Geometry (B. Chazelle, J. E. Goodman and R. Pollack, eds.), AMS Press, Providence, RI, (1998) pp. 1–56.

    Google Scholar 

  4. P.K. Agarwal, A. Efrat and M. Sharir, Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications, SIAM J. Comput. 29: 912–953 (2000).

    Article  MathSciNet  Google Scholar 

  5. P.K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir and S. Smorodinsky, Lenses in arrangements of pseudocircles and their applications, J. ACM 51: 139–186 (2004).

    MathSciNet  Google Scholar 

  6. P.K. Agarwal and M. Sharir, On the number of congruent simplices in a point set, Discrete Comput. Geom. 28: 123–150 (2002).

    MathSciNet  Google Scholar 

  7. P.K. Agarwal and M. Sharir, Pseudoline arrangements: Duality, algorithms and applications, SIAM J. Comput.

    Google Scholar 

  8. M. Ajtai, V. Chvátal, M. Newborn and E. Szemerédi, Crossing-free subgraphs, Ann. Discrete Math 12: 9–12 (1982).

    Google Scholar 

  9. N. Alon, H. Last, R. Pinchasi and M. Sharir, On the complexity of arrangements of circles in the plane, Discrete Comput. Geom. 26: 465–492 (2001).

    MathSciNet  Google Scholar 

  10. B. Aronov, H. Edelsbrunner, L. Guibas and M. Sharir, Improved bounds on the number of edges of many faces in arrangements of line segments, Combinatorica 12: 261–274 (1992).

    Article  MathSciNet  Google Scholar 

  11. B. Aronov, V. Koltun and M. Sharir, Incidences between points and circles in three and higher dimensions, Discrete Comput. Geom.

    Google Scholar 

  12. B. Aronov, J. Pach, M. Sharir and G. Tardos, Distinct distances in three and higher dimensions, Combinatorics, Probability and Computing 13: 283–293 (2004).

    Article  MathSciNet  Google Scholar 

  13. B. Aronov and M. Sharir, Cutting circles into pseudo-segments and improved bounds for incidences, Discrete Comput. Geom. 28: 475–490 (2002).

    MathSciNet  Google Scholar 

  14. P. Brass and Ch. Knauer, On counting point-hyperplane incidences, Comput. Geom. Theory Appls. 25: 13–20 (2003).

    MathSciNet  Google Scholar 

  15. P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, to appear.

    Google Scholar 

  16. B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry, Combinatorica 10: 229–249 (1990).

    Article  MathSciNet  Google Scholar 

  17. F.R.K. Chung, The number of different distances determined by n points in the plane. J. Combin. Theory Ser. A 36: 342–354 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  18. F.R.K. Chung, E. Szemerédi, and W.T. Trotter, The number of different distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom. 7: 1–11 (1992).

    Article  MathSciNet  Google Scholar 

  19. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5: 99–160 (1990).

    Article  MathSciNet  Google Scholar 

  20. K. Clarkson and P. Shor, Applications of random sampling in computational geometry II, Discrete Comput. Geom. 4: 387–421 (1989).

    MathSciNet  Google Scholar 

  21. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg (1987).

    Google Scholar 

  22. H. Edelsbrunner, L. Guibas and M. Sharir, The complexity and construction of many faces in arrangements of lines and of segments, Discrete Comput. Geom. 5: 161–196 (1990).

    MathSciNet  Google Scholar 

  23. H. Edelsbrunner, L. Guibas and M. Sharir, The complexity of many cells in arrangements of planes and related problems, Discrete Comput. Geom. 5: 197–216 (1990).

    MathSciNet  Google Scholar 

  24. H. Edelsbrunner and M. Sharir, A hyperplane incidence problem with applications to counting distances, in Applied Geometry and Discrete Mathematics; The Victor Klee’s Festschrift (P. Gritzman and B. Sturmfels, eds.), AMS Press, Providence, RI, (1991) pp. 253–263.

    Google Scholar 

  25. H. Edelsbrunner and E. Welzl, On the maximal number of edges of many faces in an arrangement, J. Combin. Theory, Ser. A 41: 159–166 (1986).

    Article  MathSciNet  Google Scholar 

  26. G. Elekes, Sums versus products in algebra, number theory and Erdős geometry, Manuscript, (2001).

    Google Scholar 

  27. P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53: 248–250 (1946).

    MathSciNet  Google Scholar 

  28. P. Erdős, D. Hickerson and J. Pach, A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly 96: 569–575 (1989).

    MathSciNet  Google Scholar 

  29. P. Erdős and G. Purdy, Some extremal problems in geometry III, Proc. 6th South-Eastern Conf. Combinatorics, Graph Theory, and Comput., (1975) pp. 291–308.

    Google Scholar 

  30. P. Erdős and G. Purdy, Some extremal problems in geometry IV, Proc. 7th South-Eastern Conf. Combinatorics, Graph Theory, and Comput., (1976) pp. 307–322.

    Google Scholar 

  31. J. Erickson, New lower bounds for Hopcroft’s problem, Discrete Comput. Geom. 16: 389–418 (1996).

    MATH  MathSciNet  Google Scholar 

  32. J. E. Goodman, Proof of a conjecture of Burr, Grünbaum and Sloane, Discrete Math., 32: 27–35 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  33. N. H. Katz and G. Tardos, A new entropy inequality for the Erdős distance problem, in Towards a Theory of Geometric Graphs, J. Pach, Ed., Contemporary Math., Vol. 342, Amer. Math. Soc., Providence, RI, (2004) pp. 119–126.

    Google Scholar 

  34. F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, (1983).

    Google Scholar 

  35. L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13: 383–390 (1975).

    MATH  MathSciNet  Google Scholar 

  36. J. Matoušek, Lectures on Discrete Geometry, Springer Verlag, Heidelberg (2002).

    Google Scholar 

  37. J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10: 157–182 (1993).

    MathSciNet  Google Scholar 

  38. L. Moser, On the different distances determined by n points, Amer. Math. Monthly 59: 85–91 (1952).

    MATH  MathSciNet  Google Scholar 

  39. J. Pach, Finite point configurations, in Handbook of Discrete and Computational Geometry, 2nd Edition (J. O’Rourke and J. Goodman, Eds.), CRC Press, Boca Raton (2004) pp. 3–24.

    Google Scholar 

  40. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, (1995).

    Google Scholar 

  41. J. Pach and M. Sharir, Repeated angles in the plane and related problems, J. Combin. Theory, Ser. A 59: 12–22 (1992).

    Article  MathSciNet  Google Scholar 

  42. J. Pach and M. Sharir, On the number of incidences between points and curves. Combinatorics, Probability and Computing 7: 121–127 (1998).

    Article  MathSciNet  Google Scholar 

  43. J. Pach and G. Tardos, Isosceles triangles determined by a planar point set, Graphs and Combinatorics 18: 769–779 (2002).

    Article  MathSciNet  Google Scholar 

  44. J. Pach and G. Tóth, Graphs drawn with fewcrossings per edge, Combinatorica 17: 427–439 (1997).

    Article  MathSciNet  Google Scholar 

  45. M. Sharir, On joints in arrangements of lines in space and related problems, J. Combin. Theory, Ser. A 67: 89–99 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, Cambridge-New York-Melbourne, (1995).

    Google Scholar 

  47. M. Sharir and E. Welzl, Point-line incidences in space, Combinatorics, Probability and Computing 13: 203–220 (2004).

    Article  MathSciNet  Google Scholar 

  48. J. Solymosi and Cs. Tóth, Distinct distances in the plane, Discrete Comput. Geom. 25: 629–634 (2001).

    MathSciNet  Google Scholar 

  49. J. Solymosi and V. Vu, Distinct distance in high-dimensional homogeneous sets, in Towards a Theory of Geometric Graphs, J. Pach, Ed., Contemporary Math., Vol. 342, Amer. Math. Soc., Providence, RI, (2004) pp. 259–268.

    Google Scholar 

  50. J. Spencer, E. Szemerédi and W.T. Trotter, Unit distances in the Euclidean plane, In: Graph Theory and Combinatorics (B. Bollobás, ed.), Academic Press, New York, (1984) pp. 293–303.

    Google Scholar 

  51. L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing 6: 353–358 (1997).

    MATH  MathSciNet  Google Scholar 

  52. E. Szemerédi and W.T. Trotter, Extremal problems in discrete geometry, Combinatorica 3: 381–392 (1983).

    MathSciNet  Google Scholar 

  53. H. Tamaki and T. Tokuyama, How to cut pseudo-parabolas into segments, Discrete Comput. Geom. 19: 265–290 (1998).

    MathSciNet  Google Scholar 

  54. G. Tardos, On distinct sums and distinct distances, Advances in Mathematics, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Pach, J., Sharir, M. (2005). Incidences. In: Golumbic, M.C., Hartman, I.BA. (eds) Graph Theory, Combinatorics and Algorithms. Operations Research/Computer Science Interfaces Series, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-387-25036-0_11

Download citation

Publish with us

Policies and ethics